
Efficiency

Announcements

Objects Review

Email
A Server can send an Email to a Client.

To do this, it appends the Email to that
Client's inbox (a list).

To find the right Client, a Server has a
dictionary called clients from the name of
the Client (a str) to the Client instance.

4

class Server:
 """An email server.

 >>> a, b = Client('John'), Client('Jack')
 >>> s = Server([a, b])
 >>> s.send(Email('Hi', 'John', 'Jack'))
 >>> b.inbox[0].msg
 'Hi'
 """
 def __init__(self, clients):
 self.clients = {c.name: c for c in clients}

 def send(self, email):
 """Append the email to the inbox of the client it is addressed to."""

class Email:
 def __init__(self, msg, sender, recipient_name):
 self.msg = msg
 self.sender = sender
 self.recipient_name = recipient_name

class Client:
 def __init__(self, name):
 self.inbox = []
 self.name = name

selfself.clientsself.clients[email.recipient_name]self.clients[email.recipient_name].inbox.append(email)

Server dict Client list

self.clients[email.recipient_name].inbox

Tree Practice

Example: Count Twins
Implement twins, which takes a Tree t. It return the number of pairs of sibling nodes whose
labels are equal.

def twins(t):
 """Count the pairs of sibling nodes with equal labels.

 >>> t1 = Tree(3, [Tree(4, [Tree(5), Tree(6)]), Tree(4, [Tree(5), Tree(5)])])
 >>> twins(t1) # 4 and 5
 2
 >>> twins(Tree(1, [Tree(1, [Tree(2)]), Tree(2, [Tree(2)])]))
 0
 >>> twins(Tree(8, [t1, t1, t1])) # 3 pairs of twins at the top, plus 2 in each branch
 9
 """
 count = 0
 n = _______________
 for i in range(n-1):
 for j in range(i+1, n):
 if __:
 count += 1
 return __

6

len(t.branches)

t.branches[i].label == t.branches[j].label

count + sum([twins(b) for b in t.branches])

3

4

5 6

4

5 5

3

4

5 6

4

5 5

3

4

5 6

4

5 5

8

1

1

2

2

2

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

8

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

(Demo)

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)

Memoization

Memoization

Idea: Remember the results that have been computed before

def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

Same behavior as f,
if f is a pure function

10

(Demo)

Memoized Tree Recursion

11

Call to fib

Found in cache
fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Orders of Growth

Common Orders of Growth

13

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Linear growth.

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Quadratic growth.

Incrementing n increases time by n times a constant

Incrementing n increases time by a constant

Match each function to its order of growth

14

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Linear growth.

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Quadratic growth.

Incrementing n increases time by n times a constant

Incrementing n increases time by a constant

def search_sorted(s, v):
 """Return whether v is in the sorted list s.

 >>> evens = [2*x for x in range(50)]
 >>> search_sorted(evens, 22)
 True
 >>> search_sorted(evens, 23)
 False
 """
 if len(s) == 0:
 return False
 center = len(s) // 2
 if s[center] == v:
 return True
 if s[center] > v:
 rest = s[:center]
 else:
 rest = s[center + 1:]
 return search_sorted(rest, v)

Match each function to its order of growth

15

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Linear growth.

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Quadratic growth.

Incrementing n increases time by n times a constant

Incrementing n increases time by a constant

def near_pairs(s):
 """Return the length of the longest contiguous
 sequence of repeated elements in s.
 >>> near_pairs([3, 5, 2, 2, 4, 4, 4, 2, 2])
 3
 """
 count, max_count, last = 0, 0, None
 for i in range(len(s)):
 if count == 0 or s[i] == last:
 count += 1
 max_count = max(count, max_count)
 else:
 count = 1
 last = s[i]
 return max_count

def max_sum(s):
 """Return the largest sum of a contiguous
 subsequence of s.
 >>> max_sum([3, 5, -12, 2, -4, 4, -1, 4, 2, 2])
 11
 """
 largest = 0
 for i in range(len(s)):
 total = 0
 for j in range(i, len(s)):
 total += s[j]
 largest = max(largest, total)
 return largest

Spring 2023 Midterm 2 Question 3(a) Part (iii)

Definition. A prefix sum of a sequence of numbers is the sum of the first n elements for
some positive length n.

(1 pt) What is the order of growth of the time to run prefix(s) in terms of the length of
s? Assume append takes one step (constant time) for any arguments.

def prefix(s):
 "Return a list of all prefix sums of list s."
 t = 0
 result = []
 for x in s:
 t = t + x
 result.append(t)
 return result

16

