
Conclusion

Announcements

Call Expressions

Problem Definition

You can call:

- f(x): Subtracts one from x

- g(x): Doubles x

- h(x, y): Concatenates the digits of x and y.

What's the shortest expression using only f, g, h, and 5
that evaluates to 2024?

g(h(g(5),g(g(f(f(5)))))) has 7 calls

4

From Discussion 0:

5➡10 5➡4➡3➡6➡12

➡1012➡2024

A Computational Approach

5

class Number:
 def __init__(self, value):
 self.value = value

 def __str__(self):
 return str(self.value)

 def calls(self):
 return 0

class Call:
 """A call expression."""
 def __init__(self, f, operands):
 self.f = f
 self.operands = operands
 self.value = f(*[e.value for e in operands])

 def __str__(self):
 return f'{self.f.__name__}({",".join(map(str, self.operands))})'

 def calls(self):
 return 1 + sum(o.calls() for o in self.operands)

def f(x):
 return x - 1
def g(x):
 return 2 * x
def h(x, y):
 return int(str(x) + str(y))

>>> n = Number(5)
>>> print(n)
5
>>> n.value
5
>>> Call(f, [n]).value
4

>>> h(g(f(5)), 5)
85
>>> c = Call(h, [Call(g, [Call(f, [n])]), n])
>>> print(c)
h(g(f(5)),5)
>>> c.value
85
>>> c.calls()
3

A Computational Approach

6

class Number:
 def __init__(self, value):
 self.value = value

 def __str__(self):
 return str(self.value)

 def calls(self):
 return 0

class Call:
 """A call expression."""
 def __init__(self, f, operands):
 self.f = f
 self.operands = operands
 self.value = f(*[e.value for e in operands])

 def __str__(self):
 return f'{self.f.__name__}({",".join(map(str, self.operands))})'

 def calls(self):
 return 1 + sum(o.calls() for o in self.operands)

def smalls(n):
 "Yield all Calls and Numbers with n calls."
 if n == 0:
 yield __________
 else:
 for operand in ____________:
 yield Call(f, [operand])
 yield Call(g, [operand])
 for k in range(n):
 for first in smalls(k):
 for second in ______________:
 if first.value > 0 and second.value > 0:
 yield Call(h, _______________)

result = []
for i in range(8):
 result.extend([e for e in smalls(i) if e.value == 2024])
print(result[0]) # prints g(h(g(5),g(g(f(f(5))))))

def f(x):
 return x - 1
def g(x):
 return 2 * x
def h(x, y):
 return int(str(x) + str(y)) smalls(n-1)

[first, second]

smalls(n-k-1)

Number(5)

Course Staff

Thank you course staff!!
We couldn’t have done it without you <3

So…why should I get involved?

• Teaching is, for lack of a better term - magical! Why? Here are a few reasons..

• Supporting those that come after you. We’re all in this together!

• Meeting some of the coolest people that Berkeley has to offer :D

• Refining your own technical understanding of course concepts

• Autonomy to explore. The classroom is a mini-laboratory of sorts.
Especially at Berkeley, course staff do a LOT (student support, writing
infrastructure, iterating on the projects)

Ok, you’ve sold me. How do I start?

• Apply directly to course staff! UCS1 (tutor) positions are a nice, gentle on-ramp to
refine your pedagogy (the way you teach) mainly through office hours and small
group tutoring. 6/7 of our UCS1s this semester are new to C88C. You are qualified.

• If you want a quicker boost - teaching over the summer is a great way to jump
directly into a UCS2 (teaching assistant) position. You get to teach your own
section!

• Applications for summer usually open mid-March.

• More information here. You can join the Data 001 EdStem for an announcement.

• Alternatively, Computer Science Mentors is a club on campus that also does small
group tutoring! I got my start teaching in CSM!

https://cdss.berkeley.edu/dsus/student-opportunities/joining-data-course-staff
https://bit.ly/data001ed

How Did We Get Here?

shm’s slide is a lot cooler. so i’m putting mine first >:D

Snapshot of Jedi’s Undergraduate Life

Sophomore Spring
DATA 100: Principles and Techniques of Data Science

CHINESE 1X: Elementary Chinese for Mandarin Speakers
POLSCI 149E: Southeast Asian Politics

Most of my time:

(First three years of undergrad): ASUC, City of Berkeley Commissioner,

student worker at Berkeley Law

(Last two years of undergrad): Teaching! (CSM, CS61B)

(super senior) Fall
COMPSCI 170: Efficient Algorithms and Intractable Problems

MATH 54: Linear Algebra and Differential Equations
PE 1: Hip Hop Dance

PE 3: Intermediate Volleyball

Shmundergrad: the space of undergrad courses shm found valuable

13

Classes I thought would be
really important for my career

Classes that I thought
would just be really fun

turned out
to actually
be important

for my
career

turned out to
mostly be for

fun!

(but may come
in handy one

day)

networking 🛜

data structures
software engineering

algorithms

discrete structures

art history
painting
drawing

american sign language 🤟

human computer
interaction

computer
graphics

philosophy 101

concert band 📯

ac
tu

al
 c

ar
ee

r
im

po
rt

an
ce

(p

os
t-

gr
ad

 e
va

lu
at

io
n)

predicted career importance (pre-graduation assessment)

advanced algorithms

sociology 101

also super valuable & fun: research, tutoring, game design club, poetry club

the witch in literature

Undergrad John

Intro courses galore: Philosophy, Linguistics, Economics, Computer Science, Math, etc.

The coolest thing (in my opinion): How people use and understand language to communicate

• Linguistics is the study the language and its use.

• Philosophy tries to answer questions about the world that the scientific method doesn't.

• Computers can carry out simulations of using and understanding language.

Another very cool thing: Decisions and actions

• Economics describes the individual & collective decisions of human beings.

• Artificial Intelligence implements automated decision making policies.

• Probability provides a language for making precise statements about uncertainty.

14

Society

Automated Decision Making

16

Life

That's all. Thanks!

