# Homework 2 Solutions

## Solution Files

You can find the solutions in hw02.py.

# Required Questions

### Q1: Largest Factor

Write a function that takes an integer `n`

that is **greater than 1** and
returns the largest integer that is smaller than `n`

and evenly divides `n`

.

```
def largest_factor(n):
"""Return the largest factor of n that is smaller than n.
>>> largest_factor(15) # factors are 1, 3, 5
5
>>> largest_factor(80) # factors are 1, 2, 4, 5, 8, 10, 16, 20, 40
40
>>> largest_factor(13) # factor is 1 since 13 is prime
1
"""
factor = n - 1
while factor > 0:
if n % factor == 0:
return factor
factor -= 1
```

Hint:To check if`b`

evenly divides`a`

, use the expression`a % b == 0`

, which can be read as, "the remainder when dividing`a`

by`b`

is 0."

Use Ok to test your code:

`python3 ok -q largest_factor`

Iterating from `n-1`

to 1, we return the first integer that evenly divides
`n`

. This is guaranteed to be the largest factor of `n`

.

### Q2: Hailstone

Douglas Hofstadter's Pulitzer-prize-winning book, *Gödel, Escher, Bach*, poses
the following mathematical puzzle.

- Pick a positive integer
`n`

as the start. - If
`n`

is even, divide it by 2. - If
`n`

is odd, multiply it by 3 and add 1. - Continue this process until
`n`

is 1.

The number `n`

will travel up and down but eventually end at 1 (at least for
all numbers that have ever been tried -- nobody has ever proved that the
sequence will terminate). Analogously, a hailstone travels up and down in the
atmosphere before eventually landing on earth.

This sequence of values of `n`

is often called a Hailstone sequence. Write a
function that takes a single argument with formal parameter name `n`

, prints
out the hailstone sequence starting at `n`

, and returns the number of steps in
the sequence:

```
def hailstone(n):
"""Print the hailstone sequence starting at n and return its
length.
>>> a = hailstone(10)
10
5
16
8
4
2
1
>>> a
7
>>> b = hailstone(1)
1
>>> b
1
"""
length = 1
while n != 1:
print(n)
if n % 2 == 0:
n = n // 2 # Integer division prevents "1.0" output
else:
n = 3 * n + 1
length = length + 1
print(n) # n is now 1
return length
```

Hailstone sequences can get quite long! Try 27. What's the longest you can find?

Note that if

`n == 1`

initially, then the sequence is one step long.

Hint:If you see 4.0 but want just 4, try using floor division`//`

instead of regular division`/`

.

Use Ok to test your code:

`python3 ok -q hailstone`

**Curious about hailstone sequences? Take a look at this article:**

- In 2019, there was a major development in understanding how the hailstone conjecture works for most numbers!

We keep track of the current length of the hailstone sequence and the current value of the hailstone sequence. From there, we loop until we hit the end of the sequence, updating the length in each step.

Note: we need to do floor division `//`

to remove decimals.

## Check Your Score Locally

You can locally check your score on each question of this assignment by running

`python3 ok --score`

**This does NOT submit the assignment!** When you are satisfied with your score, submit the assignment to Gradescope to receive credit for it.

# Submit Assignment

Submit this assignment by uploading any files you've edited **to the appropriate Gradescope assignment.** Lab 00 has detailed instructions.