CS 88 Computational Structures in Data Science

F&H 2018 FINAL SOLUTIONS

INSTRUCTIONS

e You have 2 hours to complete the exam.

e The exam is closed book, closed notes, closed computer, closed calculator, except one 8.5” x 11”7 crib sheet of
your own creation and the official CS 88 final study guide - attached to the end of the exam.

e Mark your answers on the exam itself. We will not grade answers written on scratch paper. *** WRITE
YOUR NAME ON EVERY PAGE. ***

Last name

First name

Student ID number

BearFacts email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

By my signature, I certify that all
the work on this exam is my own,
and I will not discuss it with anyone
until final session is over. (please
sign)

http://berkeley.edu

1. (16 points) Toe the line
Each of the functions below contain a docstring and several lines of code. Among them are at least one sequence
of lines that correctly implements the function. You are to cross out, i.e., remove, lines that are not needed in
a correct implementation. The remaining lines should implement the function with no extraneous lines.

(a) (3 pt) Mean Iteration.

def mean(s):
"""Return the mean of a sequence s of numbers.

>>> mean([2, 4, 31)
3.0
nun
n, psum = 0, O
for e in s:
psum += e
n += 1
return psum/n

Name:

(b) (4 pt) Where recursion

def where(s, p):
"""Return a list of the items in iteratable s that satisfy p.

>>> where([1, 2, 3, 4], lambda x: x % 2)
[1, 3]
if not s:
return []
else:
if p(s[0]):
return [s[0]] + where(s([1:], p)
else:
return where(s[1:], p)

(c) (4 pt) Higher order function clamp down
A common data analysis step is to clean data by ”clamping” it to a certain reasonable range, replacing
outliers by the lower or upper limits of the range of values. Here we use HOF to construct such clamp
function with a specified minimum and maximum value for the range.

def clamper (minv, maxv):
"""Return a function that clamps the elements of an
iterator between minv and maxv.

>>> clamper (0, 10)([1, -4, 5, 501)
[1’ 0’ 5’ 10]

nmnn
def clamp(s):
return [v if v > minv else minv for v in
[v if v < maxv else maxv for v in s]]
return clamp

def clamper (minv, maxv):
"""Return a function that clamps the elements of an iterator between minv and m:

>>> clamper (0, 10)([1, -4, 5, 501)
[1: 05 5’ 10]

mnn
def clamp(s):
return [v if (v > minv and v < maxv) else minv
if v < minv else maxv for v in s]
return clamp

Name:

(d) (5 pt) Class exam

class Exam_Seating:
"""Adjacency of seats for an exam

>>> x = Exam_Seating("CS88", "Final")
>>> x.add ("Randy", "Mark", None)

>>> x.add("Joan", "Randy", "Mark")
>>> x.add("", "Joan", "Randy")

>>> x.pairs ()

[(’Joan’, ’Randy’), (’Randy’, ’Mark’)]

>>> x.check ()

>>> x.seats [1]

{’student’: ’Randy’, ’right’: ’Mark’, ’left’: ’Joan’}

def __init__(self, course, exam):
self .name = course + exam
self .seats = []

def add(self, left_name, student, right_name):
self.seats += [{’student’:student, ’left’:left_name,
’right’:right_namel}]

def pairs(self):
return sorted([(s[’left’], s[’student’])
for s in self.seats if s[’left’]])

def check(self):
rights = [(s[’student’], s[’right’])
for s in self.seats if s[’right’]]
for pair in self.pairs():
assert pair in rights

. (12 points) CLASSic movies

Consider the following Class definition and object instantiations to answer the sequence of ”What would Python
Print” questions. For each, assume that the additional sequence of statements is executed. If the result is an
error or object, explain what it would be.

class Citizen:
home = "Tatooine"

def __init__(self, first, last):
self.firstname = first
self.lastname = last

def name (self):
return self.firstname + " " + self.lastname + " of " + self.home

def move(self, dest):
Citizen.home = dest

class Child(Citizen):
def __init__(self, first, parent):
Citizen.__init__(self,first, parent.lastname)
self .parent = parent

def name(self):
return self.firstname + " child of " + self.parent.name ()

def move(self, dest):
self .parent .move (dest)

def play(self):
return self.firstname + " played outside."

shmi = Citizen("Shmi", "Skywalker")
vader = Child("Anakin", shmi)
luke = Child("Luke", vader)

Name:

Expression

Interactive Output

>>>

vader.play ()

"Anakin played outside.’

>>>

vader . home

"Tatooine’

>>>

luke.name ()

"Luke child of Anakin child of Shmi Skywalker of Tatooine’

>>>
>>>

luke.move ("Ahch-To")
vader .name ()

"Anakin child of Shmi Skywalker of Ahch-To’

>>>

luke.name

ibound method Child.name of ...

>>>

>>>

chewy = Citizen("Chew",
"Bacca")
chewy.home

’Ahch-To’

>>>

chewy.play ()

AttributeError: ’Citizen’ object has no attribute 'play’

3. (11 points) Generate Distinctive Iterators

(a) (3 pt) Implement the distinct function, which takes an iterable i and returns a list containing the distinct
elements of it, i.e., like numpy.unique

def distinct(i):
"""Return list of distinct elements in iterable i.

>>> distinct ([1,2,3, 2])
[1: 2: 3]

nmmnn
items = []
for ele in i:
if ele not in items:
items += [ele]
return items

(b) (3 pt) Implement the distinct_G generate, which takes an iterable i and generates the distinct elements
of it.

def distinct_G(i):
"""Return a generator of distinct elements in iterable i

>>> list(distinct_G([1,2,3,2]))
[1: 25 3]

items = []
for ele in 1i:
if ele not in items:
items += [ele]
yield ele

Name: 9

(c) (5 pt) Implement the DistinctIter iterator, which takes an iterable i and returns an iterator for the
distinct elements of it.

class DistinctlIter:
"""return an iterator of distinct elements in iterable i.

>>> list(DistinctIter ([1, 2, 3, 2]1))
[1, 2, 3]

def __init__(self, i):

self.items = []
self.it = iter (i)

def iter__(self):

return self

def __next__(self):
ele = next(self.it)

while ele in self.items:

ele = next(self.it)
self.items += [ele]

return ele

10

4. (6 points) Mutants

Answer the sequence of ”What would Python Print” questions. For each, assume that the additional sequence
of statements is executed. If the result is an error or object, explain what it would be.

[’Green’, ’Fuji’,
= [’jeans’, ’shirts’,

[’books’, ’toys’]

apple
old_navy
amazon

boat [apple, old_navy, amazon]

’Poison’]
’socks’]

Expression

Interactive Output

>>> old_navy

[jeans’, ’shirts’, ’socks’]

[[Green’, 'Fuji’, 'gala’], [jeans’, 'shirts’, ’socks’], ['books’,

>>> apple[2] = ’gala’ "toys’]]
>>> boat
>5> ship = boat [:] [[Green’, 'Fuji’, 'gala’], [jeans’, ’shirts’, ’socks’], ['books’,
P : 'secret weapon’]]
>>> amazon[1] = ’secret weapon’
>>> ship
False
>>> ship is boat
True
>>> ship == boat
‘tuple’ object does not support item assignment
>>> ikea = (’bed’, ’chairs’, ’desksis ! bp &
>>> ikea[2] = ’drawers’

Name:

5. (10 points) Counting Class

11

Implement the Count class to meet the following specifications. Its objects have a comparator method that
takes a function £ and function g and argument value arg and a comparison function comp. It returns whether
the results of applying the two functions to the arg satisfy the comparison, i.e., comp(f(arg), g(arg). If
any of the function evaluations throw and exception the result is False. In addition, Count objects have a
‘exceptions‘ access method that returns the number of invocations that resulted in an exception. Count has a
‘calls* classmethod that returns the number of calls to the comparator methods of all objects. It should have
a private class attribute for keeping track of calls and a private object attribute for keep track of exceptions.

class Count:
""" Counting class

>>> ctrA = Count ()

>>> ctrA.comparator (lambda x: 1/x, lambda
True

>>> ctrA.comparator (lambda x: 1/x, lambda
False

>>> ctrB = Count ()

>>> ctrB.comparator (lambda x: 1/x, lambda
False

>>> ctrA.exceptions(), ctrB.exceptions (),
(1, 1, 3)

nnn

count = 0

@classmethod

def calls(cls):
return Count._count_
def __init__(self):
self._exceptions_ = 0
def exceptions(self):
return self._exceptions_

def comparator(self, f, g, arg, comp):
Count._count_ += 1
try:
f_res = f(arg)
g_res = g(arg)
c_res = comp(f_res, g_res)
return c_res
except:
self . _exceptions_ += 1

return False

x: x, 1, lambda x, y:
x: x, 0, lambda x, y:
X: x-2, 2, lambda x,

Count.calls ()

y:

x==y)

x==y)

x == 1/y)

12

6. (5 points) Short Answer

For each of the following, provide a sentence or two of concise explanation.

(a) (2 pt) Testing sorts

(b)

(c)

You have just written a new sort function and need to produce a set of test cases to make sure it works.
Briefly explain what you would seek to cover in a good test set, i.e, in sort_test(sort(inp)) what set of
inputs inp would you use to test your sort function?

Length of input: zero, one, two, three, larger.
Order of input: sorted, reverse, random

Write a small function sort_test to test the output of a call to sort.

def sort_test(res):
if res:
prev = res [0]
for e in res[1:]:
Could do assertion or conditional
assert e >= prev
prev = e
return true

(2 pt) Respecting Abstraction Boundaries
When following an Abstract Data Types methodology, what constitutes an abstraction violation?

When an operation method accesses the internal representation of the of the object rather than building on
selectors (getters) and setters

How does this guide the design of a Class?

The class follows the methodology if it provides creation, accessors (selectors and settors) and operation
methods, rather than exposing the instance attributes.

(1 pt) More test thoughts

What are some reasons you might want to write the tests for a function before you even build the function?
It provides a specification to write to.

It helps you understand the behavior of the code before you write it. In particular, to think about the
different cases that need to be handled.

The tests are based on how you conceive of the class, i.e., what it supposed to do, rather than the code you
wrote for the class.

