CS 88 Computational Structures in Data Science
Spring 2016 FINAL SOLUTIONS

INSTRUCTIONS

e You have 3 hours to complete the exam.

e The exam is closed book, closed notes, closed computer, closed calculator, except one 8.5” x 11”7 crib sheet (2
sided) of your own creation and the official CS 88 final study guide.

e Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

BearFacts email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

http://berkeley.edu

. (12 points) Draw a line in the sand

Each of the functions below contain a docstring and a bunch of lines of code. Among of them are at least one
sequence of lines that correctly implement the function. You are to cross out, i.e., remove, lines that are not
needed in a correct implementation. The remaining lines should implement the function with no extraneous
lines.

(a) (3 pt) Iteration.

def max(s):
max_s = s[0]
for e in s[1:]:
if e > max_s:
max_s = e
return max_s

(b) (3 pt) Recursion

def minr(s):
"""Return the minimum element of s.
if len(s) == 1:
return s [0]
else:
x = minr(s[1:])
return x if x < s[0] else s[O0]

Name:

(c) (3 pt) Higher order functions

def winner (fun, sun):

"""Return a function that counts the number of times fun(ch) occurs in sun."""

def count(ch):
return sum([1 for ¢ in sun if ¢ == fun(ch)])
return count

(d) (3 pt) Warriors got class

class NBA_playoffs:
def init__(self, teams):

self.teams = teams

def team(self, name):
return self.teams.index (name)

class Division(NBA_playoffs):

>>> west = Division("west", ["GSW", "HOU", "LAC",

>>> west.team(’POR’)
3

nmnn

def __init__(self, division, teams):
self.division = division
NBA_playoffs.__init__(self, teams)

n OKC n s

IIDALII’

IISAS"’

III

2. (12 points) Rubber baby buggy bumpers

Each problem contains a bug that will cause the function to fail, throw an exception, or hang on certain input.
Identify the bug, produce a sample input that exhibits the bug.

Here is an example.

def fib(n):
if n == 0:
return 1
else:

return fib(n-1) + fib(n-2)

Bug: Goes into an infinite loop if passed a negative value because base test should be if n <= 1:.

Error input: £ib(1).

(a) (3 pt) Bug in iteration over a list

def index(s, c):
"""Return the index of ¢ in s."""
ind = 0
for i in range(len(s)):
if s[i] == c:
ind = 1
return ind

Bug: returns 0 if s is not in ¢
(b) (3 pt) Bug in sorting

def mergesort(s):
if len(s) <= 1:
return s
middle = len(s)//2
first = mergesort(s[:middle])
second = mergesort(s[middle:])

merged = []
while len(first) > O and len(second) > O:
if first[0] < second[0]:
merged += [first[0]]
first = first[1:]
elif first[0] > second[0]:
merged += [second[0]]
second = second[1:]
return merged + first + second

Name: 5

Bug: when the values at the front of the two lists are equal we don’t move either one to merged.
mergesort([3, 2, 2, 4, 5, 1]) => inf loop

(c) (3 pt) Bug fun
What does this do?

def make_adder (a):
def adder(a, b):
return a + b
return adder
adder (2) (3)

Result:

adder should take only b

(d) (3 pt) Spot the abstraction violation.
The following provides an implementation of an abstract data type of a tree in which each node contains a
value and zero or more sub-trees as its branches. It contains a an abstraction barrier violation. Identify it
and fix it by marking up the code.

def tree(value, branches=[]):
return [branches, valuel

def root(t):
return t[1]

def branches(t):
return t[0]

def count_nodes(t):
num_child_nodes = 0
for b in t[0]:
num_child_nodes += count_nodes (b)

return 1 + num_child_nodes

Violation: t[0] should be branches(t)

3. (5 points) Class of dogs - WWPP

Consider the following class defintion

class Dog:

dogs = []

def __init__(self, name):
Dog.dogs += [self]

self .name = name

def speak(self):
return(’Bark! My name is ’ + self.name + ’.7)

class Puppy (Dog):

def __init__(self, name):
self .puddles = 0
Dog.__init__(self, name)

def piddle(self):
self .puddles += 1

clifford = Dog(’Clifford’)
fido = Puppy(’fido’)

For each of following, fill in what would Python print.
>>> clifford.speak()

'Bark! My name is Clifford.’
>>> fido.speak ()

'Bark! My name is fido.’
>>> clifford.piddle ()

Name:

AttributeError 'Dog’ object has no attribute piddle’

>>> map(lambda x:x.name, Dog.dogs)

jmap object at 0x...J,

>>> list (map(lambda x:x.name, Dog.dogs))

['Clifford’, "fido’]

4. (8 points) SQL sequel
The questions below refer to the following tables.

Courses

| course_id | course_name | sem |

| 1 | ChemilA | Fall 2015 |

| 2 | AstroC10 | Fall 2015 |

| 3 | csss | Spring 2016 |

| 4 | MathilB | Spring 2016 |
Grades

student_id	student_name	c_id	grade
1	Lucy Jones	2	95
2	John Doe	3	97
3	Jimmy Smith	4	77
4	Carol White	3	88 I
3	Jimmy Smith	1	85
[1	Lucy Jones	4	90
2	John Doe	1	75

(a) (3 pt) What would the query return? Write down all output values and column names.

SELECT course_name FROM Courses
ORDER BY course_name;

course_name
AstroC10
Cheml1A
CS88
Mathl1B

(b) (3 pt) What would the following query return? Write down all output values and column names.

SELECT c¢_id, max(grade) as max_grade

FROM Students
GROUP BY c_id
ORDER BY c_id;

cid maxgrade 1 852 95 3 97 4 90
(c) (2 pt) Draw the box and pointer diagram for the following code.

x = [3, 6, 7]
y = list(x)
y[ol = x[0] =
z = x[1:]
y.append (z)

3

5. (10 points) Heard you like iterators

init__ method for MinSortterator takes in a

Implement an iterator class called MinSortIteratorThe __
sequence of integers. A MinSortIterator instance represents a sorted sequence of the integers in the initial
sequence.

See the doctests for expected behavior. Note that your solution is not allowed to modify the initial sequence.

class MinSortIterator:
>>> list(MinSortIterator ([5, 3, 1, 6, 21))
(1, 2, 3, 5, 6]
>>> seq = [5, -3, 19, 33, -5, 0]

>>> sorted_iter = MinSortIterator (seq)
>>> next(sorted_iter)
-5

>>> next(sorted_iter)
-3

Name:

>>>
(5,
>>>
(o,

def

def

def

seq
-3, 19, 33, -5, 0]
list(sorted_iter)
5, 19, 33]

__init__(self, sequence):
self .sequence = sequencel[:]

__iter__(self):
return self

next__(self):

if len(self.sequence) == 0:
raise Stoplteration
minimum_element = min(self.sequence)

self.sequence.remove (minimum_element)
return minimum_element

Why is 1ist(...) required in the first doctest? What would happen without it?

10

6. (12 points) Data Science Tables

In data8 you have use the Table abstraction in a zillion different ways. In cs88, you have learned enough to
build Tables yourself - again. It is an example of a container class. Below is a skeleton implementation of a
subset of tables using the ADT design pattern. Just like the Tables you have used in data8, it is an ordered
collection of named columns. All columns must be the same length. But a column is a sequence, rather than
an numpy array. The internal representation is a list of column names and a list of column sequences.

Your job is to fill in the blanks for the incomplete methods. You will want to refer to the doctest for detail on
method behavior.

from reduce_soln import *
import collections

class Table88:
"""Data science tables an ordered collection of named columns.

>>> x = Table88().with_columns([(’a’, [1, 2, 3]), (’b’, [4, 5, 6]1)]1)
>>> x[’a’]

[1, 2, 3]

>>> len(x)

2

>>> x.num_rows ()

3

>>> list(x.labels())
[’a’, ’b’]

>>> X[’C’] - [’f’,)g),)h)]
>>> len(x)

3

>>> x.row_as_dict(1)[’c’]

J J

g

def __init__(self):
self._columns = []
self._labels = []
self._num_rows = 0

def num_rows (self):
if self._columns
return len(self._columns [0])
return O

def labels(self):
return self._labels

def columns (self):
return self._columns

def len__(self):

return len(self._columns)

def __setitem__(self, column_label, column_data):
"""Special method to add or set a column to a data vector using indexing."""
if not isinstance(column_data, collections.Iterable) or isinstance(column_dat
raise ValueError (’Column data must be list’)
if self._columns and len(column_data) != self.num_rows ():

Name: 11

raise ValueError (’Column length mismatch’)

if column_label in self.labels():
self._columns[self.labels().index(column_label)] = column_data
else:
self._columns.append (column_data)
self._labels.append(column_label)

def __getitem__(self, column_label):
return self._columns[self.labels().index(column_label)]

def with_columns (self, columns):
new_table = Table88 ()
for (column_label, column_data) in columns:
new_table[column_label] = column_data
return new_table

def apply(self, fun, column_label):
return map(fun, self[column_label])

def select(self, column_labels):
return Table88().with_columns ([(label, self[label]) for label in column_label

def where(self, row_selector):
return Table88().with_columns ([(label, [self[label][i] for i in range(self.nu
for label in self.labels()])

def row(self, index):
return [self[label][index] for label in self.labels ()]

def row_as_dict(self, index):
return {label:self[label][index] for label in self.labels ()}

def rows(self):
for i in range(self.num_rows ()):
yield self.row(i)

def summary(self, stats = [min, mean, max, sum]):
def wrap(fun, seq):
try:
return fun(seq)
except:

return "NA"
stat_table = Table88()

stat_table[’stats’] = [stat.__name__ for stat in stats]
for label in self.labels():
stat_table[label] = [wrap(stat, self[label]) for stat in stats]

return stat_table

def __repr__(self):

lines = "Table88:\n"
if self.columns ()
lines += "| " + " |".join(self.labels()) + " ["

for i in range(self.num_rows ()):

12

lines += "\n| "

for label in self.labels ()
lines += str(self[label][i]) +
return lines

