Name and SID: 1

1. Evaluators Gonna Evaluate

For each of the expressions in the table below, write the output displayed by the interactive Python
interpreter when the expression is evaluated. The output may have multiple lines. If an error
occurs, write “Error”. If a function is outputted, write “function”. Your answers must fit within
the boxes provided. Work outside the boxes will not be graded.

Hint: No answer requires more than 6 lines. The first two rows have been provided as examples.
Recall: The interactive interpreter displays the value of a successfully evaluated expression, unless
it is None. Assume that you have started python3 and executed the following statements:

def anGenerator(): class Tulip(Flower):
X =0 season = “spring”
while True:
yield x def color(self):
X += 1 print(self.colour)

class GenIterator:
def __init__(self): class Daffodil(Flower):
self.current = anGenerator ()
def __init__(self, colour):

def __next__(self): self.colour = colour
return next(self.current) self.height = 0
def __tdter__(self): def color(self):
return self print(self.colour)
class Flower: def grow(self, -dnches):
petals = True self.height += dnches
def __init__(self, colour): def season(self):
self.colour = colour print("Season pushed back")

def color(self):
print(“I’m colorful!”)

Expression Interactive Output
Flower.petals True

Rose () Error

tulip = Tulip(“red”) red

tulip.color()

Name and SID:

daffodil = Daffodil(“yellow”)
daffodil.color ()

yellow

Flower.color (daffodil)

I’m colorful!

daffodil.petals

True

tulip.season = “early spring”
print(Tulip.season, tulip.season)

spring early spring

tule = Tulip(“purple”) “spring”
tule.season
tulip = Tulip(“blue”) yellow
Tulip.color(daffodil) Error
tulip.color(daffodil)
tulip.height = 100 Error
Daffodil.grow(tulip, 200)
Tulip.height
a = GenIterator() 0
for i in range(l, 6): 1
print(next(a)) 2
3
4
for i in range(3): 5
print(next(a)) 6
-
next(GenIterator()) 0

Name and SID:

2. Some Tech Fame [Python Tutor Solution]

Fill in the environment diagram that results from executing the so =5

code below until the entire program is finished, an error occurs, or te = 6

all frames are filled. You may not need to use all of the spaces or _

frames ’ ' ch = 12, 4]

There are 20 blanks total you need to fill out! def solme):

me = 8
A complete answer will: def fa(me, so):
. Add all missing names and parent annotations to all local frames. so0.ap pend (me)
. Draw any necessary arrows to function names.
g Add all missing values created or referenced during execution. return me + 1
. Show the return value for each local frame. return fa

def fa(me, so):
return [me] + so

te = so(te)(te, ch)
me = fa
me([‘c', 'h'], ch)

Global Frame
so |

te |

ch |

fa |
| func so(me) [parent = Globall

me

i i - t = Global
5o [paren obald func fa(me, so) [parent = Globall

me |

fa | func fa(me, so) [parent

Return Value |

f2: fa [parent = |

me I

S0 l

Return Value |

f3: [parent = 1

Return Value

http://pythontutor.com/visualize.html#code=so%20%3D%205%0Ate%20%3D%206%0Ach%20%3D%20%5B2,%204%5D%0A%0Adef%20so%28me%29%3A%0A%20%20%20%20me%20%3D%208%0A%20%20%20%20def%20fa%28me,%20so%29%3A%0A%20%20%20%20%20%20%20%20so.append%28me%29%0A%20%20%20%20%20%20%20%20return%20me%20%2B%201%0A%20%20%20%20return%20fa%0A%0Adef%20fa%28me,%20so%29%3A%0A%20%20%20%20return%20%5Bme%5D%20%2B%20so%0A%0Ate%20%3D%20so%28te%29%28te,%20ch%29%0Ame%20%3D%20fa%0Ame%28%5B'c',%20'h'%5D,%20ch%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Name and SID: 4

3. Warriors in 6

Answer the following questions given a table NBA containing players’ results after a game of the
following form:

Table: Players

name | team | college | age
DeMarcus Cousins | Golden State Kentucky 28
Kevin Durant Golden State Texas 30

| | |

| | |
James Harden | Houston | Arizona | 29

| | |

| | |

Kawhi Leonard Toronto San Diego 27

Oski Bear Memphis California 22
Table: Stats

name | minutes | points | rebounds | assists
DeMarcus Cousins | © | © | © | ©

Kevin Durant | 28 | 35 | 5 | 3

James Harden | 33 | 35 | 4 | 6

Kawhi Leonard | 15 | 18 | 10 | 10

Oski Bear | 24 | 101 | 39 | 31

A. What is the output of the following SQL query. Not all boxes will be necessary.

SELECT name, rebounds+assists, points FROM Stats WHERE points > minutes
ORDER BY points, name

Kawhi Leonard 20 18
James Harden 10 35
Kevin Durant 8 35
Oski Bear 70 101

B. Write a SQL query that retrieves the name of all players who had more rebounds than assists.

SELECT name FROM Stats WHERE rebounds > assists

Name and SID: 5

C. Write a SQL query that retrieves the name and their points per minute for all players who
played at least 1 minute.

SELECT name, points/minutes FROM Stats WHERE minutes != 0

D. Write a SQL query that retrieves the name, college, and points of all players.

SELECT stats.name, college, points FROM Players, Stats WHERE Players.name
= Stats.name

E. Get all unique pairs of player names who scored at least 30 points in a game.

SELECT a.name, b.name FROM Stats as a, Stats as b WHERE a.name < b.name
AND a.points + b.points > 60 ORDER BY a.name

Name and SID: 6

4. Mutation

In a city of N people, represented by integers 1 to N, you are tasked in finding which person out of
all of them is the mayor. Only one person can be mayor. You are given pairs, a list of 2-element
lists in the form of [a,b]. Each pair denotes that person a trusts person b.

The mayor has two important properties:
1. The mayor is trusted by all of the other people.
2. The mayor trusts no one.

Complete the main function and helper functions below to return the integer that represents the
mayor or -1 if the mayor does not exist. You can assume pairs is not an empty list and N > 1.

A. First, complete the createTrusted helper function.

def createTrusted(pairs):

""" Returns a dictionary mapping a person to a list of people who
trust them.

>>> createTrusted([[1,3], [2,3], [3,1]1]1)
{3: [1, 2], 1: [3]}
>>> createTrusted([[1,3], [1,4], [2,3], [2,4], [4,3]1])
{3: [1, 2, 41, 4: [1, 2]}
trusted = {}
for pair in pairs:
if pair[l] 1in trusted:
trusted[pair[1]].append(pair[0])
else:
trusted[pair[1]] = [pair[0]]
return trusted

Name and SID: 7

B. Next, complete the createTrusts helper function.

def createTrusts(pairs):
""" Returns a dictionary mapping a person to a list of people they
trust.

>>> createTrusts([[1,3], [2,3], [3,1]])
{1: [3], 2: [3], 3: [1]}
>>> createTrusts([[1,3], [1,4], [2,3], [2,4], [4,3]1]1)
{1: [3, 4], 2: [3, 4], 4: [3]}
trusts = {}
for pair in pairs:
if pair[0] din trusts:
trusts[pair[0]].append(pair[1l])
else:
trusts[pair[0]] = [pair[1]]
return trusts

Name and SID:

C. Finally, complete the findMayor function to solve our original problem. You may use

createTrusted and createTrusts from above and can assume they work properly.

def findMayor (N, pairs):

>>>
>>>
2
>>>
>>>
3
>>>
>>>
-1
>>>
>>>
-1
>>>
>>>
3

1 trusts 2, 2 doesn’t trust anyone, so 2 1is the mayor
findMayor (2, [[1,2]])

everyone trusts 3, but 3 trusts no one, so 3 is mayor
findMayor (3, [[1,3], [2,3]1])

everyone trusts 3, but 3 trusts 1, so not mayor
findMayor(3, [[1,3], [2,3], [3,1]])

No one is trusted by everyone, so no mayor
findMayor (3, [[1,2], [2,3]1])

everyone trusts 3, but 3 trusts no one, so 3 is mayor
findMayor(4, [[1,3], [1,4], [2,3], [2,4], [4,3]])

trusted = createTrusted(pairs)
trusts = createTrusts(pairs)

most_trusted = []

for

for

key in trusted:
if len(trusted[key]) == N-1:
most_trusted += [key]

person in most_trusted:
if person not 1in trusts:
return person

return -1

Name and SID: 9

5. Perfect Numbers

A. Write a function that returns the list of all proper divisors of a number n.

Definition: x is a divisor of n if n % x == 0

Definition: x is a proper divisor if X is a divisor of n and x !=n

In other words, a proper divisor of n is a number that evenly divides n and is not equal to n.

def get_proper_divisors(n):
>>> get_proper_divisors(1l)
[] # 1 is the only divisor of 1, but is not a proper divisor
>>> get_proper_divisors(2)
[1] # 1 and 2 are divisors of 2, but 1 is the only proper divisor
>>> get_proper_divisors(3)

[1]

>>> get_proper_divisors(4)
[1, 2]

>>> get_proper_divisors(5)
[1]

>>> get_proper_divisors(6)
[1, 2, 3]

divisor_1lst = []
for x in range(l, n):
We’re not concerned with efficiency but can also just iterate
until the square root of n.
if (n % x == 0):
divisor_lst.append (i)
return divisor_1lst

Name and SID: 10

B. Write a generator function perfect nums() that continually yields successive perfect numbers.
Perfect numbers are positive numbers that are equal to the sum of their proper divisors. You can
assume that get proper divisors() is implemented correctly and may use it in this problem.

def perfect_nums():

mmn

>>> perfect_num_gen = perfect_nums()

>>> next(perfect_num_gen)

6 # 6 is the first perfect number because its proper divisors are 1,

2, 3 which sum to 1itself

>>> next(perfect_num_gen)

28 #28 1is the second perfect number because its proper divisors are
1, 2, 4, 7, 14 which sum to itself

current_num = 0
while True:
current_num += 1
proper_divisors = get_proper_divisors(current_num)
if (sum(proper_divisors) == current_num):
yield current_num

Name and SID: 11

6. Time Is Money

Fill inthe next method in Timer and the pass_time method in KitchenCounter. A timer should
step forward one second each time next is called. Once the timer runs out, you should print out a
message that says the food is ready. KitchenCounter maintains a list of multiple timers; pass_time
should step forward all of the timers by that much time. The timers should always be within one
second of each other (i.e. increment all of the timers once before incrementing any timer twice.
TIP: Don’t forget about Stoplteration.

class Timer:
mmnn
>>> a = Timer("Pete Zaroll", 2, "seconds")
>>> [i for i in a]
Pete Zaroll 1is ready!
[1, 2]
nnn
Maps a unit string to a multiplier that converts it to seconds
unit2Seconds = {"seconds" : 1, "minutes" : 60, "hours" : 60%60,
"days": 24x60%60}
def __init__(self, food, time, unit):
self.food = food
self.current = 1
self.time = time * self.unit2Seconds[unit]

def __+diter__(self):
return self

def ready(self):
print(self.food + " dis ready!")

def __next__(self):
if self.current >= self.time:
self.ready()
raise Stoplteration
else:
self.current += 1
return self.current - 1

Name and SID:

class KitchenCounter:
mmnn

>>> a = Timer ("Pete Zaroll", 15, "minutes")

>>> b = Timer("Chim E Changa", 20.5, "minutes")
>>> ¢ = Timer ("Pho Lah Phil", 12, "seconds")
>>> k = KitchenCounter ()

>>> k.add_timer(a)

>>> k.add_timer (b)

>>> k.add_timer(c)

>>> k.pass_time (10, "seconds")
10 seconds passed

>>> k.pass_time(2, "seconds")
Pho Lah Phil 1is ready!

2 seconds passed

>>> k.pass_time (15, "minutes")
Pete Zaroll is ready!

15 minutes passed

>>> k.pass_time(5.5, "minutes")
Chim E Changa is ready!

5.5 minutes passed
nnn

Maps a unit string to a multiplier that converts it to seconds
unit2Seconds = {"seconds" : 1, "minutes" : 60, "hours" : 3600,
"days": 86400}

def __init__(self):
self.timers = []

def add_timer(self, timer):
self.timers.append(timer)

def pass_time(self, time, units):
mimn
Pass the appropriate amount of seconds on each timer,
removing (lists have a remove method:), it once 1it’s
time has run out.

seconds = int(self.unit2Seconds[units]*time)

for i 1in range(seconds):
for timer in self.timers:
try:
next(timer)
except StopIteration:

Name and SID:

self.timers.remove(timer)
print(str(time) + " " + str(units) + " passed")

13

Name and SID:

7. Class Is in Session

Fill out this class to match the interactive outputs:

>>> andrew = Person("Andrew")

>>> andrew.say()

Hi I'm Andrew

>>> alex = TA("Alex")

>>> amir = Student("Amir", alex)

>>> amir.say()

Hi I'm Amir and I'm 1in Alex's lab

>>> alex.add_student(amir)

>>> alex.add_student(Student("Jessica", alex))
>>> alex.say()

Hi I'm Alex and my students are Amir Jessica
>>> alex.add_student(Student(“Gerald”, alex))
>>> alex.say()

Hi I'm Alex and my students are Amir Jessica Gerald

class Person:
def __1init__(self, name):
self.name = name

def say(self):
print("Hi I'm " + self.name)

class Student(Person):
def __init__(self, name, ta):
super.__init__(self, name)
self.ta = ta

def say(self):
print("Hi I'm " + self.name + " in " + self.ta.name + "'s lab")

class TA(Person):
def __init__(self, name):
super.__init__(self, name)
self.students = []

def add_student(self, student):
self.students.append(student)

def say(self):
student_string = «”
for student in self.students:
student_string += student.name + ¢« ¢

14

print(“Hi I'm “ + self.name + “ and my students are “ + student_string)

