
Create Rubric
100 points

 Grid View List View

 Create your rubric now or come back to it later. You can also make edits to your rubric while grading.

Q1 Conceptual

9 points

Q1.1

3 points  Rubric S

Suppose the following code is run
sequentially:

def mystery(func, lst):

 if lst == Link.empty:

 return Link.empty

 else:

 return Link(func(lst.first), mystery(func, lst.rest))

lst = Link(1, Link(2, Link(3, Link(4))))

mystery_lst = mystery(lambda x: x * 2, lst)

For reference, here is the Link class
definition:

class Link:

 empty = ()

 def __init__(self, first, rest=empty):

 self.first = first

 self.rest = rest

What is the value of mystery_lst?

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q1.2

2 points  Rubric S

Link(2, Link(4, Link(6, Link(8))))

Link(4, Link(8))

Link(3, Link(4, Link(5, Link(6))))

Link(2, Link(6))

1 +3.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

Which built-in Python function does the
function mystery behave the same as?

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q1.3

2 points  Rubric S

Suppose the following code is run
sequentially:

kiwi = [1,9,8,6]

grape = [9,2,3,6]

Which of the following options would result
in the output [1, 9, 8, 6, 9, 2, 3, 6] ? Select
all that apply.

Assume that each choice is independent of
each other AND don't affect each other.

(Choice A)

>>> result = kiwi + grape

>>> result

(Choice B)

>>> result = grape + kiwi

>>> result

(Choice C)

>>> kiwi.append(grape)

>>> kiwi

(Choice D)

>>> kiwi.extend(grape)

>>> kiwi

(Choice E)

>>> kiwi += grape

>>> kiwi

(Choice F)

>>> grape += kiwi

>>> grape

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

filter

reduce

map

max

1 +2.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

1 +2.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

Q1.4

2 points  Rubric S

Suppose we have two tables in SQL, table_a
with n rows and table_b with m rows.
Suppose we perform the following join
query:

select * from table_a, table_b;

How many rows will this query output?

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q2 Environment Diagrams

10 points

Fill in the blanks to complete the
environment diagram. All the code used is as
follows, and the code runs to completion.

def function(star, moon):

 star[moon] = var

 def function2(planet, sun):

 planet[sun] = var

Choice A

Choice B

Choice C

Choice D

Choice E

Choice F

m

n

m - n

m + n

m * n

1 +2.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

 return function2

def other(fish, wave):

 fish = 5

 var = 5

d = {'s' : 1, 'k' : 1, 'y': 2}

var = 'blue'

once = function(d, 'y')

once(d, 'line')

other(5, 5)

once(d, 's')

Q2.1

3 points  Rubric S

After the above has executed, what would be
the output of d.values() ? Provide the values
in the format of a four element list. (Blank a)

['blue', 1, 'blue', 'blue']

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q2.2

2 points  Rubric S

1 +3.0

Correct

2 +0.0

Incorrect

3 +3.0

Correct

 Add Rubric Item  Create Group  Im

What is the value of the variable var in the
global frame? (Blank b)

'blue'

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q2.3

3 points  Rubric S

What is the parent frame of the function
function2 ? (Blank c)

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q2.4

2 points  Rubric S

What is the return value of frame 3 (f3)?
(Blank d)

None

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

1 +2.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

global

f1

f2

f3

f4

1 +3.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

1 +2.0

Correct

2 +0.0

Incorrect

Q3 What Would Python Do?

10 points

For each expression below, write the output
displayed by the interactive Python
interpreter when the expression is evaluated.
The output may have multiple lines. If an
error occurs, write Error (if any lines are
displayed before the error, include those in
your output). If a function is returned, write
"Function". If the value "None" is returned,
write "None".

NOTE: Assume each part is executed in order.
Previous lines DO impact the current
expression. (i.e., part B assumes part A was
executed, as so on.)

def changer(lst, f, g):

 filtered = list(filter(f, lst))

 if True in filtered:

 return list(map(g, lst))

 else:

 return reduce(g, lst)

brat = [1, 2, 3, 4, 5, 6, 7, 8]

charlie = lambda x: x % 2==0

xcx = lambda a, b: a + b

Q3.1

2 points  Rubric S

>>> changer(brat, charlie, xcx)

36

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

 Add Rubric Item  Create Group  Im

1 +2.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

Q3.2

2 points  Rubric S

>>> xcx = lambda a: "talk"

>>> changer(brat, charlie, xcx)

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q3.3

2 points  Rubric S

>>> apple = lambda y: y

>>> brat = [True, 0, '360', {}, False, 365]

>>> changer(brat, apple, lambda c, d: c * d)

Error

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q3.4

2 points  Rubric S

Assume that this is a new environment; every
variable defined above is no longer
accessible

>>> [[x for x in range(i)] for i in range(5) if i % 2 == 1]

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Error

"talktalktalktalktalktalktalktalk"

"talktalktalktalk"

"talk"

1 +2.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

1 +2.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

1 +2.0

[[0], [0, 1, 2]]

[[0], [0, 1, 2]]

Q3.5

2 points  Rubric S

Assume that this is a new environment; every
variable defined above is no longer
accessible

>>> lst = [1, 2, 3]

>>> lst.append(lst.append(4))

>>> lst

[1, 2, 3, 4, None]

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q4 Debugging

10 points

Data C88C staff want to determine how
effective discussion sections are. They want
to see if there is a noticeable difference
between the quiz scores of students from
different discussion sections.

2 +2.0

[[0],[0,1,2]]

3 +2.0

[[0], [0,1,2]]

4 +2.0

[[0], [0,1,2]]

5 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

1 +2.0

[1, 2, 3, 4, None]

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

They have written the function most_points
below to help determine this information.
most_points takes in a dictionary sections
that maps discussion TAs to a list of students
in their section and takes in a dictionary
scores that maps each student to a list of
their quiz scores.

most_points should return a dictionary that
maps each TA to the total sum of points their
students scored across all quizzes.

>>> discussion_sections = {

 'mia' : ['dan', 'serena', 'jenny'],

 'satleen' : ['chuck', 'blaire', 'nate']

}

>>> quiz_scores = {

 'blaire' : [9, 9, 8], 'chuck' : [6, 5, 9],

 'dan' : [7, 7, 2], 'jenny' : [4, 6, 2],

 'nate' : [5, 7, 6], 'serena' : [9, 10, 0]

}

>>> most_points(discussion_sections, quiz_scores)

{'mia' : 47, 'satleen': 64}

Here is an incorrect implementation of
most_points :

1 def most_points(sections, scores):

2 points = []

3 for key in sections:

4 score_sum = 0

5 for i in value:

6 score_sum += sum(scores[i])

7 points[key] = score_sum

8 return points

Unfortunately, the Data C88C staff wrote this
code after hours of quiz grading and
overlooked some bugs. Help them work
through the bugs and correct their code.

Q4.1

3 points  Rubric S

I claim that calling the most_points() function
as it is currently written will result in an error.
On what line will the function error?

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

1 +3.0

Correct

Q4.2

3 points  Rubric S

The current code may have a bug on line 2.
Rewrite line 2 to avoid this bug or write "No
bug" if there is no bug.

points = {}

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q4.3

4 points  Rubric S

Ignoring all other bugs, lines 3-6 can operate
as intended by changing just one line. Ignore
all bugs outside of lines 3-6. Consider each
edit independently.

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q5 Object Oriented Programming

14 points

Line 2

Line 3

Line 5

Line 7

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

1 +3.0

Correct: points = {}

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

line 3. Replace for key in sections: with
for key, value in sections.items():

line 3. Replace for key in sections: with
for value in sections.values():

line 6. Replace score_sum += sum(scores[i])
with score_sum += sum(value)

1 +4.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

Consider the following code modeling Person
eating at Restaurants :

class Restaurant:

 def __init__(self, food_strength):

 self.food_strength = food_strength

 def serve_customer(self, person):

 if person.hunger > 0:

 person.eat(self.food_strength)

 if person.hunger > 0:

 return f"wow {person.name} is still hungry"

 else:

 return f"{person.name} is full"

class Person:

 def __init__(self, name):

 self.name = name

 # a person is "full" if their hunger is <= 0

 # a full person will not eat more

 self.hunger = 10

 def eat(self, food_strength):

 self.hunger -= food_strength

 return self.hunger

Example: Alice eats at the golden_bear_cafe Restaurant

>>> alice = Person("Alice")

>>> f"Alice hunger: {alice.hunger}"

Alice hunger: 10

>>> golden_bear_cafe = Restaurant(8)

>>> golden_bear_cafe.serve_customer(alice)

wow Alice is still hungry

>>> f"Alice hunger: {alice.hunger}"

Alice hunger: 2

>>> golden_bear_cafe.serve_customer(alice)

Alice is full

>>> f"Alice hunger: {alice.hunger}"

Alice hunger: -6

Full people don't eat more

>>> golden_bear_cafe.serve_customer(alice)

Alice is full

>>> f"Alice hunger: {alice.hunger}"

Alice hunger: -6

Q5.1

3 points  Rubric S

Suppose I want to create a Student class that
is just like a Person , but can literally eat as
much as they want (their hunger never
drops). In other words, a hungry Student can
eat forever:

>>> top_dog = Restaurant(8)

>>> cecilia = Student("Cecilia")

>>> cecilia.hunger

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

1 +3.0

Correct

2 +0.0

10

>>> top_dog.serve_customer(cecilia)

wow Cecilia is still hungry

>>> top_dog.serve_customer(cecilia)

wow Cecilia is still hungry

>>> top_dog.serve_customer(cecilia)

wow Cecilia is still hungry

>>> cecilia.hunger

10

Which implementation correctly implements
the desired behavior?

Choice A

class Student(Person):

 def eat(self):

 return self.hunger

Choice B

class Student:

 def eat(self, food_strength):

 return self.hunger

Choice C

class Student(Person):

 def eat(self, food_strength):

 return self.hunger

Choice D

class Student(Person):

 def eat(self, food_strength):

 super().eat(food_strength)

 return self.hunger

Q5.2

3 points  Rubric S

Suppose I wanted each Restaurant to keep
track of all customers they have ever served,
via a customer_history :

>>> top_dog = Restaurant(4)

>>> thai_basil = Restaurant(8)

>>> top_dog.serve_customer(mike)

>>> thai_basil.serve_customer(tajel)

>>> thai_basil.serve_customer(cecilia)

>>> len(top_dog.customer_history)

1

>>> len(thai_basil.customer_history)

2

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Choice A

Choice B

Choice C

Choice D

Incorrect

 Add Rubric Item  Create Group  Im

1 +3.0

Correct

2 +0.0

Incorrect

What would be the most appropriate way to
add customer_history to the Restaurant class?

Q5.3

4 points  Rubric S

Class attribute

Class method

Instance attribute

Instance method

 Add Rubric Item  Create Group  Im

I'd like to implement a ChainRestaurant class
that behaves just like a Restaurant , but
determines its food_strength by using the
maximum food_strength from an input list of
Restaurant s:

>>> chain_rest = ChainRestaurant(

 [Restaurant(5), Restaurant(6), Restaurant(2)]

)

>>> chain_rest.food_strength

6

>>> bob = Person("Bob")

>>> bob.hunger

10

>>> chain_rest.serve_customer(bob)

wow Bob is still hungry

>>> bob.hunger

4

I claim that we can implement this behavior
by making a single change in the
ChainRestaurant constructor. Fill in the blank
to achieve the desired behavior:

class ChainRestaurant(Restaurant):

 def __init__(self, restaurants):

 super().__init__(_________FILL_ME_IN_________)

max([restaurant.food_strength for
restaurant in restaurants])

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q5.4

4 points  Rubric S

I'd like to implement a MagicRestaurant class
that inherits from Restaurant . MagicRestaurant
is special in that, in its serve_customer()
method, it sets the customer's hunger to
exactly 0 (aka "serves a magical food that
makes every customer exactly full"):

>>> magic_restaurant = MagicRestaraunt()

>>> alice = Person("Alice")

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

1 +4.0

Correct: max([restaurant.food_strength for restaur
restaurants])

2 +4.0

Correct

3 +0.0

Incorrect

4 +3.5

Nearly Correct: minor mistake, like: passing self i
constructor. Ex: self.food_strength for i in restauran

5 +2.0

Incorrect but on the right path. Ex: tries to do some
reasonable with restaurant.food_strength and taki
max. Ex: max(restaurants.food_strength), max for x
[restaurants.value], max(food_strength for restaura
restaurants)

6 +0.0

Incorrect: not on the right path. Ex: max(food_stren
max(Restaurant)

 Add Rubric Item  Create Group  Im

1 +4.0

Correct

2 +0.0

>>> alice.hunger

10

>>> magic_restaurant.serve_customer(alice)

Alice is full

>>> alice.hunger

0

>>> bob = Person("Bob")

>>> bob.hunger = 4

>>> magic_restaurant.serve_customer(bob)

Bob is full

>>> bob.hunger

0

Which of the following implementations
correctly implements the above desired
behavior?

Choice A

class MagicRestaraunt(Restaurant):

 def serve_customer(self, person):

 person.hunger = 0

 return super().serve_customer(person)

Choice B

class MagicRestaraunt(Restaurant):

 def __init__(self):

 super().__init__(person.hunger)

Choice C

class MagicRestaraunt(Restaurant):

 def __init__(self):

 super().__init__(0)

 def serve_customer(self, person):

 out = super().serve_customer(person)

 person.hunger = 0

 return out

Choice D

class MagicRestaraunt(Restaurant):

 def __init__(self):

 super().__init__("magic")

 def serve_customer(self, person):

 self.food_strength = person.hunger

 return super().serve_customer(person)

Q6 Linked Lists

12 points

In this problem, you are to implement a
function similar to Python's built-in filter
function, but for linked lists. You will create a

Choice A

Choice B

Choice C

Choice D

Incorrect

 Add Rubric Item  Create Group  Im

recursive function that takes a predicate
function (a function that returns True or
False) and a linked list, and returns a new
linked list containing only the elements that
satisfy the predicate.

You are provided with a Link class that
represents a node in a linked list. The Link
class is defined as follows:

class Link:

 empty = ()

 def __init__(self, first, rest=empty):

 self.first = first

 self.rest = rest

def linked_list_filter(func, lnk):

 """Filters the linked list based on the predicate function.

 Parameters

 func (function): A function that takes a single argument

 and returns a boolean.

 lnk (Link): A linked list.

 Returns: A new linked list containing only the elements that

 satisfy the predicate function.

>>> def is_even(x):

return x % 2 == 0

>>> lst = Link(1, Link(2, Link(3, Link(4, Link(5)))))

>>> filtered_lst = linked_list_filter(is_even, lst)

>> filtered_lst

Link(2, Link(4))

 """

if ___(a)___ == Link.empty:

 return Link.empty

elif func(___(b)___):

 return Link(___(c)___, ___(d)___)

else:

 return ___(e)___

Q6.1

2 points  Rubric S

Fill in blank (a).
 Removing the Correct and Incorrect rubric items will inter

with auto-grading for this question.

lnk.rest

lnk

lnk.rest.first

lnk.first

1 +2.0

Correct

2 +0.0

Incorrect

Q6.2

3 points  Rubric S

Fill in blank (b)

lnk.first

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q6.3

4 points  Rubric S

Fill in blank (c) and (d) using the options
below.

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q6.4

3 points  Rubric S

Fill in blank (e).
 Removing the Correct and Incorrect rubric items will inter

with auto-grading for this question.

 Add Rubric Item  Create Group  Im

1 +3.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

lnk.first, linked_list_filter(func, lnk.rest)

func(lnk.first), linked_list_filter(func, lnk.rest)

lnk.first, linked_list_filter(func, lnk)

lnk.rest.first, linked_list_filter(func, lnk.rest)

1 +4.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

1 +3.0

linked_list_filter(func, lnk.rest)

Q7 Trees

12 points

Implement constellation_tree , which takes in
a Tree instance and mutates it so that all
values at depth k are changed to be the
string "star" . You may assume that k is
always less than or equal to the depth of the
input tree.

For reference, here is the Tree class
definition:

class Tree:

 def __init__(self, value, branches=()):

 self.value = value

 for branch in branches:

 assert isinstance(branch, Tree)

 self.branches = list(branches)

 def is_leaf(self):

 return not self.branches

>>> t = Tree(

 0, [Tree(2, [Tree(4, [Tree(6), Tree(13)])]), Tree(7, [Tree(3), Tree(8)])]

)

>>> constellation_tree(t, 2)

>>> t

Tree(0, [Tree(2, [Tree('star', [Tree(6), Tree(13)])]), Tree(7, [Tree('star'), Tree('star')])])

def constellation_tree(t, k):

if _________(a)_________:

t.value = 'star'

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

for b in ________(b)_________:

constellation_tree(_____(c)_______)

Q7.1 Trees

4 points  Rubric S

Fill in blank (a).

k == 0

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q7.2

4 points  Rubric S

Fill in blank (b).

t.branches

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q7.3

4 points  Rubric S

1 +4.0

k == 0

2 -0.5

= instead of ==

3 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

1 +4.0

t.branches

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

Fill in blank (c).
 Removing the Correct and Incorrect rubric items will inter

with auto-grading for this question.

Q8 Efficiency

11 points

Q8.1

3 points  Rubric S

Recall: Both list indexing (eg lst[ind]) and
len(lst) is a constant time O(1) operation.

def fn_a(lst):

 out = 0

 for ind in range(round(len(lst) / 2)):

 out += lst[ind]

 return out

What is the order of growth for fn_a() ? Let n
be the length of lst .

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q8.2

3 points  Rubric S

Suppose the function my_fn(lst) takes in a
list of integers and returns an integer, and is

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

b, k + 1

b, k

t, k - 1

b, k - 1

1 +4.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

O(1)

O(log(n))

O(n)

O(n^2)

O(2^n)

1 +3.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

known to have order of growth O(n).

def fn_b(lst):

 out = 0

 for x in range(1000):

 out += my_fn(lst) * my_fn(lst)

 return out

What is the order of growth for fn_b() ? Let n
be the length of lst .

Q8.3

3 points  Rubric S

Suppose fn_c(n) takes in an integer n .

def fn_c(n):

 for i in range(n):

 print('once')

 for j in range(n):

 print('twice')

What is the order of growth for fn_c() ?

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q8.4

2 points  Rubric S

Suppose fn_d(n) takes in an integer n .

def fn_d(n):

 if n <= 0:

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

O(1)

O(log(n))

O(n)

O(n^2)

O(2^n)

1 +3.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

O(1)

O(log(n))

O(n)

O(n^2)

O(2^n)

1 +3.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

1 +2.0

 print('zero!')

 return 0

 else:

 return fn_d(n - 1) + fn_d(n - 2)

What is the order of growth for fn_d() ?

Q9 SQL

12 points

Suppose we have the following tables:

Table: records

name, department, title, salary, supervisor

Alyssa P Hacker, Computer, Programmer, 40000, Ben Bitdiddle

Ben Bitdiddle, Computer, Wizard, 60000, Oliver Warbucks

Eben Scrooge, Accounting, Chief Accountant, 75000, Oliver Warbucks

Lana Lambda, Administration, Executive Director, 610000, Lana Lambda

Lem E Tweakit, Computer, Technician, 25000, Ben Bitdiddle

Louis Reasoner, Computer, Programmer Trainee, 30000, Alyssa P Hacker

Oliver Warbucks, Administration, Big Wheel, 150000, Oliver Warbucks

Table: salaries

name, salary2022, salary2023

Alyssa P Hacker, 40000, 80000

Ben Bitdiddle, 60000, 80000

Eben Scrooge, 75000, 76000

Lana Lambda, 610000, 610000

Lem E Tweakit, 25000, 28000

Louis Reasoner, 30000, 30000

Oliver Warbucks, 150000, 120000

Table: happy_table

name, happiness_pts

Alyssa P Hacker, 8

Ben Bitdiddle, 6

Eben Scrooge, 2

Lana Lambda, 10

Lem E Tweakit, 6

Louis Reasoner, 6

Oliver Warbucks, 8

Q9.1

3 points  Rubric S

O(1)

O(log(n))

O(n)

O(n^2)

O(2^n)

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

I'd like to write a SQL query to fetch the
name, salary, and title of all employees
whose salary is > 70000:

query template

SELECT ______________ FROM records WHERE _________________;

the desired query output

name, salary, title

Eben Scrooge, 75000, Chief Accountant

Lana Lambda, 610000, Executive Director

Oliver Warbucks, 150000, Big Wheel

Note: the order of the result rows does not
matter.

Write the correct SQL query, starting with the
above query template:

SELECT name, salary, title FROM
records WHERE salary > 70000;

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Q9.2

3 points  Rubric S

I'd like to write a SQL query to calculate, for
each supervisor, the maximum salary of the
supervisor's subordinates (along with the
supervisor's name):

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

1 +3.0

Correct: SELECT name, salary, title from records WH
salary > 70000;. Also correct: SELECT [name], [salar
[title] ...

2 +3.0

Correct

3 +0.0

Incorrect

4 +2.5

Very Close: everything is right but didn't fetch all of
right columns

5 +1.5

Sort of on the right path: wrote (mostly) valid SQL t
kind of there but is incorrect

6 +0.0

Incorrect: shows no familiarity with SQL, or tries to
Python code instead of SQL

7 -0.25

(subtractive) Minor SQL syntax issue or typo. Ex: SE
[name, salary, title], or >= instead of > , 7000 vs 70

 Add Rubric Item  Create Group  Im

1 +3.0

SELECT ________ FROM records GROUP BY _________;

the desired query output

Ben Bitdiddle, 40000

Oliver Warbucks, 150000

Lana Lambda, 610000

Alyssa P Hacker, 30000

Eben Scrooge, 18000

For instance, in the records table the
supervisor Ben Bitdiddle has two
subordinates: Alyssa P Hacker and
Lem E Tweakit , with salaries 40000 and 25000
respectively. Hence, why we have the output
row Ben Bitdiddle, 40000 .

Note: the order of the result rows does not
matter.

Write the correct SQL query, starting with the
above query template:

SELECT supervisor, max(Salary) FROM
records GROUP BY supervisor;

Q9.3

3 points  Rubric S

I'd like to write a SQL query to fetch both the
old salary (from the records table) and the
2023 salary for each employee.

Here is a SQL query that tries to achieve this:

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Correct: SELECT supervisor, max(Salary) FROM records GROU
supervisor;

2 +3.0

Correct

3 +2.5

Nearly Correct: everything is right, but they selecte
name instead of supervisor , or selected unnecess
columns. Ex: select name, max(salary) from records
group by supervisor, select name, supervisor, max(
from records group by supervisor;

4 +1.5

Has the right idea: query has the right idea (eg wan
group on supervisor and apply max to salary), but
query isn't right. Does the group but no max aggre
Ex: select name,salary from records group by supe
where map(max, salary), select supervisor,salary fro
records group by supervisor.

5 +1.0

Almost has the right idea: the group is wrong, but
a max on salary somewhere. Ex: select supervisor f
records group by salary.max, select supervisor from
records group by max(salary)

6 +0.0

Incorrect

7 -0.25

(subtractive) Minor SQL syntax issue. Ex: SELECT [n
salary].

 Add Rubric Item  Create Group  Im

1 +3.0

SELECT name, salary, salary2023 FROM records, salaries

WHERE name=salaries.name;

desired output

name, salary, salary2023

Alyssa P Hacker, 40000, 80000

Ben Bitdiddle, 60000, 80000

Eben Scrooge, 75000, 76000

Lana Lambda, 610000, 610000

Lem E Tweakit, 25000, 28000

Louis Reasoner, 30000, 30000

Oliver Warbucks, 150000, 120000

Note: the order of the result rows does not
matter.

This query:

Q9.4

3 points  Rubric S

I'd like to write a SQL query that joins the
records and happiness tables together to
output the name , salary , and their
happiness_pts together.

Here is a SQL query that tries to achieve this:

SELECT records.name, records.salary, happy_table.happiness_pts

FROM records, happy_table

WHERE records.name = happy_table.name;

Desired output

name, salary, happiness_pts

Alyssa P Hacker, 40000, 8

Ben Bitdiddle, 60000, 6

Eben Scrooge, 75000, 2

Lana Lambda, 610000, 10

Lem E Tweakit, 25000, 6

Louis Reasoner, 30000, 6

Oliver Warbucks, 150000, 8

Note: the order of the result rows does not
matter.

 Removing the Correct and Incorrect rubric items will inter
with auto-grading for this question.

Runs successfully and returns the desired
output

Runs successfully but returns the wrong
output

Errors

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

1 +3.0

Correct

2 +0.0

Incorrect

 Add Rubric Item  Create Group  Im

This query:
Runs successfully and returns the desired
output

Runs successfully but returns the wrong
output

Errors

