
When a class is called:
1.A new instance of that class is created:
2.The __init__ method of the class is called with the new object as its first

argument (named self), along with any additional arguments provided in the
call expression.

An account instance

Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

balance: 0 holder: 'Jim'

__init__ is called a
constructor

self should always be
bound to an instance of
the Account class or a
subclass of Account

A new instance is
created by calling a

class

<expression> . <name>
The <expression> can be any valid Python expression.
The <name> must be a simple name.
Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>.

Dot expression

Call expression

>>> type(Account.deposit)
<class 'function'>
>>> type(a.deposit)
<class 'method'>

>>> Account.deposit(a, 5)
10
>>> a.deposit(2)
12

Function call: all
arguments within

parentheses

Method invocation:
One object before
the dot and other
arguments within

parentheses

Assignment statements with a dot expression on their left-hand side affect
attributes for the object of that dot expression
• If the object is an instance, then assignment sets an instance attribute
• If the object is a class, then assignment sets a class attribute

To evaluate a dot expression:
1. Evaluate the <expression> to the left of the dot, which yields

the object of the dot expression
2. <name> is matched against the instance attributes of that object;

if an attribute with that name exists, its value is returned
3. If not, <name> is looked up in the class, which yields a class

attribute value
4. That value is returned unless it is a function, in which case a

bound method is returned instead

or
 return super().withdraw(amount + self.withdraw_fee)

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

Instance
attributes of
jim_account

Instance
attributes of
tom_account

To look up a name in a class:
1. If it names an attribute in the class, return the attribute value.
2. Otherwise, look up the name in the base class, if there is one.
>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

Python object system:

 class Link:
 empty = ()

Some zero
length sequence

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or
 isinstance(rest, Link)
 self.first = first
 self.rest = rest

 def __repr__(self):
 if self.rest:
 rest = ', ' + repr(self.rest)
 else:
 rest = ''
 return 'Link(' + repr(self.first) + rest + ')'

 def __str__(self):
 string = '('
 while self.rest is not Link.empty:
 string += str(self.first) + ' '
 self = self.rest
 return string + str(self.first) + ')'

Built-in isinstance
function: returns True if
branch has a class that
is or inherits from Tree

 def is_leaf(self):
 return not self.branches
def leaves(tree):
 """The leaf values in a tree."""
 if tree.is_leaf():
 return [tree.value]
 else:
 lst = []
 for b in tree.branches:
 lst.extend(leaves(b))
 return lst def fib_tree(n):

 if n == 0 or n == 1:
 return Tree(n)
 else:
 left = fib_tree(n - 2)
 right = fib_tree(n - 1)
 fib_n = left.value + right.value
 return Tree(fib_n, [left, right])

2

3

1

0 1 1 1

0 1

Root value
Branch

Leaf

Values

NodesPathRecursive description:
•A tree has a root value
and a list of branches
•Each branch is a tree
•A tree with zero branches
is called a leaf

Relative description:
•Each location is a node
•Each node has a value
•One node can be the
parent/child of another

class Tree:
 def __init__(self, value, branches=[]):
 self.value = value
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

first: 4

rest:

Link instance

first: 5

rest:

Link instance

>>> s = Link(4, Link(5))
>>> s
Link(4, Link(5))
>>> s.first
4
>>> s.rest
Link(5)
>>> print(s)
(4 5)
>>> print(s.rest)
(5)
>>> s.rest.rest is
Link.empty
True

Root or Root Node

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

• Recursive decomposition: finding
simpler instances of a problem.

• E.g., count_partitions(6, 4)
• Explore two possibilities:

• Use at least one 4
• Don't use any 4

• Solve two simpler problems:
• count_partitions(2, 4)
• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

Anatomy of a recursive function:

DATA C88C Final Reference Sheet Page 1 of 2

3
1 2

1 1

Tree(3,
 [Tree(1), Tree(2,
 [Tree(1), Tree(1)])])

Exceptions are raised with a raise statement.
raise <expr>

<expr> must evaluate to a subclass of BaseException or an instance of one.

try:
 <try suite>
except <exception class> as <name>:
 <except suite>

The <try suite> is executed first.
If, during the course of executing the
<try suite>, an exception is raised
that is not handled otherwise, and

>>> try:
 x = 1 / 0
 except ZeroDivisionError as e:
 print('handling a', type(e))
 x = 0

handling a <class 'ZeroDivisionError'>
>>> x
0

If the class of the exception inherits from <exception class>, then
The <except suite> is executed, with <name> bound to the exception.

• The def statement header is like
any function

• Conditional statements check for
base cases

• Base cases are evaluated
without recursive calls

• Recursive cases are evaluated
with recursive calls

def sum_digits(n):
 "Sum the digits of positive integer n."
 if n < 10:
 return n
 else:
 all_but_last, last = n // 10, n % 10
 return sum_digits(all_but_last) + last

SELECT [expression] AS [name], [expression] AS [name], ... ;

E

F

A D G

B C H

SELECT a.child AS first, b.child AS second
 FROM parents AS a, parents AS b
 WHERE a.parent = b.parent AND a.child < b.child;

first second
B C
A D
A G
D G

Latitude Longitude Name

38 122 Berkeley

42 71 Cambridge

45 93 Minneapolis

A table has columns and rows

A column
has a

name and
a type

A row has a value for each column

The number of groups is the number of unique values of an expression
A HAVING clause filters the set of groups that are aggregated

kind legs weight

dog 4 20

cat 4 10

ferret 4 10

parrot 2 6

penguin 2 10

t-rex 2 12000

weight/
legs COUNT(*)

5 2

2 2

weight/legs=5

weight/legs=2

weight/legs=2

weight/legs=3

weight/legs=5

weight/legs=6000

SELECT [columns] FROM [table] WHERE [condition] ORDER BY [order];

sqlite> CREATE TABLE phrase AS SELECT "hello, world" AS s;
sqlite> SELECT substr(s, 4, 2) || substr(s, instr(s, " ") + 1, 1)
 FROM phrase;
low

Basic string manipulation is built into SQL, but differs from Python

sqlite> SELECT "hello," || " world";
hello, world

String values can be combined to form longer strings

SELECT "D" AS parent, "H" AS child UNION
SELECT "A" , "B" UNION
SELECT "A" , "C" UNION
SELECT "F" , "A" UNION
SELECT "F" , "D" UNION
SELECT "F" , "G" UNION
SELECT "E" , "F";

CREATE TABLE parents AS

SELECT weight / legs, COUNT(*) FROM animals
 GROUP BY weight / legs
 HAVING COUNT(*) > 1;

An aggregate function in the [columns] clause computes a value from a
group of rows:
• MAX([expression]) evaluates to the largest value of [expression] for
any row in a group

• COUNT(*) evaluates to the number of rows in a group
• MIN, SUM, & AVG are also aggregate functions similar to MAX
With no GROUP BY clause, aggregation is performed over all rows:

SELECT MAX(legs) FROM animals; MAX(legs)

4

DATA C88C Final Reference Sheet Page 2 of 2

Return an iterator
over the elements of
an iterable value

Return the next element

iter(iterable):

next(iterator):

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> k = iter(d)
>>> next(k)
'one'
>>> next(k)
'two'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3

A generator function is a function that yields values instead of returning.
def a_then_b(a, b):
 yield from a
 yield from b
>>> list(a_then_b([3, 4], [5, 6]))
[3, 4, 5, 6]

def perms(lst):
 """Generates the permutations of lst one by one.
 >>> perms = perms([1, 2, 3])
 >>> p = list(perms)
 >>> p.sort()
 >>> p [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
 “""
 if lst == []:
 yield []
 else:
 for perm in perms(lst[1:]):
 for i in range(len(lst)):
 yield perm[:i] + [lst[0]] + perm[i:]

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Linear growth. E.g., iterating over a list of length n

Logarithmic growth. E.g., binary search
Doubling n only increments time by a constant

Constant growth. E.g., accessing a value from a dictionary.
Increasing n doesn't affect time

Quadratic growth. E.g., finding all pairs of a list of
integers (double for loop)

Incrementing n increases time by n times a constant

Incrementing n increases time by a constant

O(bn)
<latexit sha1_base64="7k1r5ohl/h4Qdp1yWFRDybMUWwc=">AAAB7XicbVDLSgNBEOyNrxhfqx69DAlCRAi7XvQY9OLNCOYByRpmJ7PJmNmZZWZWCEv+wYsHRcSb/+PNv3HyOGhiQUNR1U13V5hwpo3nfTu5ldW19Y38ZmFre2d3z90/aGiZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw6uJ33ykSjMp7swooUGM+4JFjGBjpcZNObwXJ1235FW8KdAy8eekVC12Tj8AoNZ1vzo9SdKYCkM41rrte4kJMqwMI5yOC51U0wSTIe7TtqUCx1QH2fTaMTq2Sg9FUtkSBk3V3xMZjrUexaHtjLEZ6EVvIv7ntVMTXQQZE0lqqCCzRVHKkZFo8jrqMUWJ4SNLMFHM3orIACtMjA2oYEPwF19eJo2ziu9V/FubxiXMkIcjKEIZfDiHKlxDDepA4AGe4AVeHek8O2/O+6w158xnDuEPnM8fuwCQCQ==</latexit><latexit sha1_base64="pLelT/3n1ernarEdpl+dJC4Vvfo=">AAAB7XicbVDLSgNBEOyNrxhfUY9ehgQhIoRdL3oMevFmBPOAZA2zk9lkdHZmmZkVliX/4EEPinj1f7zlb5w8DppY0FBUddPdFcScaeO6Yye3srq2vpHfLGxt7+zuFfcPmlomitAGkVyqdoA15UzQhmGG03asKI4CTlvB49XEbz1RpZkUdyaNqR/hgWAhI9hYqXlTCe7FSa9YdqvuFGiZeHNSrpW6py/jWlrvFb+7fUmSiApDONa647mx8TOsDCOcjgrdRNMYk0c8oB1LBY6o9rPptSN0bJU+CqWyJQyaqr8nMhxpnUaB7YywGepFbyL+53USE174GRNxYqggs0VhwpGRaPI66jNFieGpJZgoZm9FZIgVJsYGVLAheIsvL5PmWdVzq96tTeMSZsjDEZSgAh6cQw2uoQ4NIPAAz/AG7450Xp0P53PWmnPmM4fwB87XD8RqkY8=</latexit><latexit sha1_base64="pLelT/3n1ernarEdpl+dJC4Vvfo=">AAAB7XicbVDLSgNBEOyNrxhfUY9ehgQhIoRdL3oMevFmBPOAZA2zk9lkdHZmmZkVliX/4EEPinj1f7zlb5w8DppY0FBUddPdFcScaeO6Yye3srq2vpHfLGxt7+zuFfcPmlomitAGkVyqdoA15UzQhmGG03asKI4CTlvB49XEbz1RpZkUdyaNqR/hgWAhI9hYqXlTCe7FSa9YdqvuFGiZeHNSrpW6py/jWlrvFb+7fUmSiApDONa647mx8TOsDCOcjgrdRNMYk0c8oB1LBY6o9rPptSN0bJU+CqWyJQyaqr8nMhxpnUaB7YywGepFbyL+53USE174GRNxYqggs0VhwpGRaPI66jNFieGpJZgoZm9FZIgVJsYGVLAheIsvL5PmWdVzq96tTeMSZsjDEZSgAh6cQw2uoQ4NIPAAz/AG7450Xp0P53PWmnPmM4fwB87XD8RqkY8=</latexit><latexit sha1_base64="lh+QN5vYVCNTaViZri/ieStTftY=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUS8l60WPRizcr2A9o15JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ3FuNvb2V1bX1js7BV3N7Z3dsvHRw2jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR9dRvPTFtuJL3dpywICYDySNOiXVS87YSPsizXqmMq3gGtEz8nJQhR71X+ur2FU1jJi0VxJiOjxMbZERbTgWbFLupYQmhIzJgHUcliZkJstm1E3TqlD6KlHYlLZqpvycyEhszjkPXGRM7NIveVPzP66Q2ugwyLpPUMknni6JUIKvQ9HXU55pRK8aOEKq5uxXRIdGEWhdQ0YXgL768TJrnVR9X/Ttcrl3lcRTgGE6gAj5cQA1uoA4NoPAIz/AKb57yXrx372PeuuLlM0fwB97nD6iBjoA=</latexit>

O(n2)
<latexit sha1_base64="fxdqK8mpvWTQC6DjJIhxecHR+Nc=">AAAB7XicbVDLSgNBEOyNrxhfUY9ehgQhIoTdXOIx6MWbEcwDkjXMTmaTMbMzy8ysEJb8gxcPiog3/8ebf+PkcdDEgoaiqpvuriDmTBvX/XYya+sbm1vZ7dzO7t7+Qf7wqKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjK6mfuuRKs2kuDPjmPoRHggWMoKNlZo3JXFfOevli27ZnQGtEm9BirVC9/wDAOq9/Fe3L0kSUWEIx1p3PDc2foqVYYTTSa6baBpjMsID2rFU4IhqP51dO0GnVumjUCpbwqCZ+nsixZHW4yiwnRE2Q73sTcX/vE5iwgs/ZSJODBVkvihMODISTV9HfaYoMXxsCSaK2VsRGWKFibEB5WwI3vLLq6RZKXtu2bu1aVzCHFk4gQKUwIMq1OAa6tAAAg/wBC/w6kjn2Xlz3uetGWcxcwx/4Hz+AHIoj9k=</latexit><latexit sha1_base64="fUWbN3kzssxJRSRE8/MVNcuo0i0=">AAAB7XicbVDLSgNBEOyNrxhfUY9ehgQhIoTdXPQY9OLNCOYByRpmJ7PJmNmZZWZWCEv+wYMeFPHq/3jL3zh5HDSxoKGo6qa7K4g508Z1J05mbX1jcyu7ndvZ3ds/yB8eNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXUbz5RpZkU92YUUz/CfcFCRrCxUuO2JB4qZ9180S27M6BV4i1IsVronL9MqqNaN//d6UmSRFQYwrHWbc+NjZ9iZRjhdJzrJJrGmAxxn7YtFTii2k9n147RqVV6KJTKljBopv6eSHGk9SgKbGeEzUAve1PxP6+dmPDST5mIE0MFmS8KE46MRNPXUY8pSgwfWYKJYvZWRAZYYWJsQDkbgrf88ippVMqeW/bubBpXMEcWTqAAJfDgAqpwAzWoA4FHeIY3eHek8+p8OJ/z1oyzmDmGP3C+fgB7kpFf</latexit><latexit sha1_base64="fUWbN3kzssxJRSRE8/MVNcuo0i0=">AAAB7XicbVDLSgNBEOyNrxhfUY9ehgQhIoTdXPQY9OLNCOYByRpmJ7PJmNmZZWZWCEv+wYMeFPHq/3jL3zh5HDSxoKGo6qa7K4g508Z1J05mbX1jcyu7ndvZ3ds/yB8eNbRMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4fXUbz5RpZkU92YUUz/CfcFCRrCxUuO2JB4qZ9180S27M6BV4i1IsVronL9MqqNaN//d6UmSRFQYwrHWbc+NjZ9iZRjhdJzrJJrGmAxxn7YtFTii2k9n147RqVV6KJTKljBopv6eSHGk9SgKbGeEzUAve1PxP6+dmPDST5mIE0MFmS8KE46MRNPXUY8pSgwfWYKJYvZWRAZYYWJsQDkbgrf88ippVMqeW/bubBpXMEcWTqAAJfDgAqpwAzWoA4FHeIY3eHek8+p8OJ/z1oyzmDmGP3C+fgB7kpFf</latexit><latexit sha1_base64="AA9q8Orv9CfeeHWIoueTctuCfpw=">AAAB7XicbVA9T8MwEL2Ur1K+CowsFhVSWaqkC4wVLGwUiX5Ibagc12lNHTuyHaQq6n9gYQAhVv4PG/8Gp80ALU866em9O93dC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5DrzO09UaSbFvZnG1I/wSLCQEWys1L6tiof6+aBccWvuHGiVeDmpQI7moPzVH0qSRFQYwrHWPc+NjZ9iZRjhdFbqJ5rGmEzwiPYsFTii2k/n187QmVWGKJTKljBorv6eSHGk9TQKbGeEzVgve5n4n9dLTHjpp0zEiaGCLBaFCUdGoux1NGSKEsOnlmCimL0VkTFWmBgbUMmG4C2/vEra9Zrn1rw7t9K4yuMowgmcQhU8uIAG3EATWkDgEZ7hFd4c6bw4787HorXg5DPH8AfO5w9fqY5Q</latexit>

O(n)
<latexit sha1_base64="thSTtFLDoPeMBhXVDBCZsdC5kIE=">AAAB63icbVA9SwNBEJ2LXzF+RS1tlgQhIoQ7Gy2DNnZGMB+QHGFvs5cs2d07dveEcOQv2FgoYmHjH7Lz37h3SaGJDwYe780wMy+IOdPGdb+dwtr6xuZWcbu0s7u3f1A+PGrrKFGEtkjEI9UNsKacSdoyzHDajRXFIuC0E0xuMr/zSJVmkXww05j6Ao8kCxnBJpPuavJsUK66dTcHWiXeglQblf75BwA0B+Wv/jAiiaDSEI617nlubPwUK8MIp7NSP9E0xmSCR7RnqcSCaj/Nb52hU6sMURgpW9KgXP09kWKh9VQEtlNgM9bLXib+5/USE175KZNxYqgk80VhwpGJUPY4GjJFieFTSzBRzN6KyBgrTIyNp2RD8JZfXiXti7rn1r17m8Y1zFGEE6hADTy4hAbcQhNaQGAMT/ACr45wnp03533eWnAWM8fwB87nD0tLjzU=</latexit><latexit sha1_base64="m19+DXNT7/N3ErQr0l/iSNjr9GI=">AAAB63icbVBNSwMxEJ31s9avqkcvoUWoCGXXix6LXrxZwX5Au5Rsmm1Dk+ySZIVl6V/woqCIV/+Qt/4bs20P2vpg4PHeDDPzgpgzbVx36qytb2xubRd2irt7+weHpaPjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Db3209UaRbJR5PG1Bd4KFnICDa5dF+V5/1Sxa25M6BV4i1IpV7uXbxO62mjX/ruDSKSCCoN4VjrrufGxs+wMoxwOin2Ek1jTMZ4SLuWSiyo9rPZrRN0ZpUBCiNlSxo0U39PZFhonYrAdgpsRnrZy8X/vG5iwms/YzJODJVkvihMODIRyh9HA6YoMTy1BBPF7K2IjLDCxNh4ijYEb/nlVdK6rHluzXuwadzAHAU4hTJUwYMrqMMdNKAJBEbwDG/w7gjnxflwPueta85i5gT+wPn6AVS1kLs=</latexit><latexit sha1_base64="m19+DXNT7/N3ErQr0l/iSNjr9GI=">AAAB63icbVBNSwMxEJ31s9avqkcvoUWoCGXXix6LXrxZwX5Au5Rsmm1Dk+ySZIVl6V/woqCIV/+Qt/4bs20P2vpg4PHeDDPzgpgzbVx36qytb2xubRd2irt7+weHpaPjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Db3209UaRbJR5PG1Bd4KFnICDa5dF+V5/1Sxa25M6BV4i1IpV7uXbxO62mjX/ruDSKSCCoN4VjrrufGxs+wMoxwOin2Ek1jTMZ4SLuWSiyo9rPZrRN0ZpUBCiNlSxo0U39PZFhonYrAdgpsRnrZy8X/vG5iwms/YzJODJVkvihMODIRyh9HA6YoMTy1BBPF7K2IjLDCxNh4ijYEb/nlVdK6rHluzXuwadzAHAU4hTJUwYMrqMMdNKAJBEbwDG/w7gjnxflwPueta85i5gT+wPn6AVS1kLs=</latexit><latexit sha1_base64="tndW4QtEoTbzjT1XjQapIifJ9wA=">AAAB63icbVBNSwMxEJ31s9avqkcvwSLUS8l60WPRizcr2A9ol5JNs21okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemAhuLMbf3tr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNObnO/88S04bF6tNOEBZKMFI84JTaX7mvqYlCp4jqeA60SvyBVKNAcVL76w5imkilLBTGm5+PEBhnRllPBZuV+alhC6ISMWM9RRSQzQTa/dYbOnTJEUaxdKYvm6u+JjEhjpjJ0nZLYsVn2cvE/r5fa6DrIuEpSyxRdLIpSgWyM8sfRkGtGrZg6Qqjm7lZEx0QTal08ZReCv/zyKmlf1n1c9x9wtXFTxFGCUziDGvhwBQ24gya0gMIYnuEV3jzpvXjv3seidc0rZk7gD7zPHzjMjaw=</latexit>

O(log n)
<latexit sha1_base64="0DLF3Gz1ia/tOnvj44Xajp00cAA=">AAAB8HicbVDJSgNBEK1xjXGLevTSJAgRIcx40WPQizcjmEUyQ+jpdJImvQzdPUIY8hVePCjq1c/x5t/YWQ6a+KDg8V4VVfXihDNjff/bW1ldW9/YzG3lt3d29/YLB4cNo1JNaJ0ornQrxoZyJmndMstpK9EUi5jTZjy8nvjNR6oNU/LejhIaCdyXrMcItk56uC2HXPWRPO0USn7FnwItk2BOStViePYOALVO4SvsKpIKKi3h2Jh24Cc2yrC2jHA6zoepoQkmQ9ynbUclFtRE2fTgMTpxShf1lHYlLZqqvycyLIwZidh1CmwHZtGbiP957dT2LqOMySS1VJLZol7KkVVo8j3qMk2J5SNHMNHM3YrIAGtMrMso70IIFl9eJo3zSuBXgjuXxhXMkINjKEIZAriAKtxADepAQMATvMCrp71n7837mLWuePOZI/gD7/MHsd6RJQ==</latexit><latexit sha1_base64="A9AjNuW7D5Ucq28MGn7dBUBMLmI=">AAAB8HicbVDLSgNBEOyNrxhfUY9ehgQhIoRdL3oMevFmBPOQ7BJmJ5NkyMzsMjMrLEu+Qg8eFPHq53jL3zh5HDSxoKGo6qa7K4w508Z1J05ubX1jcyu/XdjZ3ds/KB4eNXWUKEIbJOKRaodYU84kbRhmOG3HimIRctoKRzdTv/VElWaRfDBpTAOBB5L1GcHGSo93FZ9HAyTPusWyW3VnQKvEW5ByreSfv0xqab1b/PZ7EUkElYZwrHXHc2MTZFgZRjgdF/xE0xiTER7QjqUSC6qDbHbwGJ1apYf6kbIlDZqpvycyLLRORWg7BTZDvexNxf+8TmL6V0HGZJwYKsl8UT/hyERo+j3qMUWJ4aklmChmb0VkiBUmxmZUsCF4yy+vkuZF1XOr3r1N4xrmyMMJlKACHlxCDW6hDg0gIOAZ3uDdUc6r8+F8zltzzmLmGP7A+foBu0iSqw==</latexit><latexit sha1_base64="A9AjNuW7D5Ucq28MGn7dBUBMLmI=">AAAB8HicbVDLSgNBEOyNrxhfUY9ehgQhIoRdL3oMevFmBPOQ7BJmJ5NkyMzsMjMrLEu+Qg8eFPHq53jL3zh5HDSxoKGo6qa7K4w508Z1J05ubX1jcyu/XdjZ3ds/KB4eNXWUKEIbJOKRaodYU84kbRhmOG3HimIRctoKRzdTv/VElWaRfDBpTAOBB5L1GcHGSo93FZ9HAyTPusWyW3VnQKvEW5ByreSfv0xqab1b/PZ7EUkElYZwrHXHc2MTZFgZRjgdF/xE0xiTER7QjqUSC6qDbHbwGJ1apYf6kbIlDZqpvycyLLRORWg7BTZDvexNxf+8TmL6V0HGZJwYKsl8UT/hyERo+j3qMUWJ4aklmChmb0VkiBUmxmZUsCF4yy+vkuZF1XOr3r1N4xrmyMMJlKACHlxCDW6hDg0gIOAZ3uDdUc6r8+F8zltzzmLmGP7A+foBu0iSqw==</latexit><latexit sha1_base64="yULcGfPqvH4yvZXAAswBK59K6KU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2HXix6DXrwZwTwkWcLsZDYZMo9lZlYIS77CiwdFvPo53vwbJ8keNLGgoajqprsrSjgz1ve/vcLa+sbmVnG7tLO7t39QPjxqGZVqQptEcaU7ETaUM0mblllOO4mmWESctqPxzcxvP1FtmJIPdpLQUOChZDEj2Drp8a7a42qI5Hm/XPFr/hxolQQ5qUCORr/81RsokgoqLeHYmG7gJzbMsLaMcDot9VJDE0zGeEi7jkosqAmz+cFTdOaUAYqVdiUtmqu/JzIsjJmIyHUKbEdm2ZuJ/3nd1MZXYcZkkloqyWJRnHJkFZp9jwZMU2L5xBFMNHO3IjLCGhPrMiq5EILll1dJ66IW+LXg3q/Ur/M4inACp1CFAC6hDrfQgCYQEPAMr/Dmae/Fe/c+Fq0FL585hj/wPn8An1+PnA==</latexit>

O(1)
<latexit sha1_base64="KVPMTpnH9s6vUR/4ASm+0cLiDGE=">AAAB63icbVA9SwNBEJ2LXzF+RS1tlgQhIoQ7Gy2DNnZGMB+QHGFvs5cs2d07dveEcOQv2FgoYmHjH7Lz37h3SaGJDwYe780wMy+IOdPGdb+dwtr6xuZWcbu0s7u3f1A+PGrrKFGEtkjEI9UNsKacSdoyzHDajRXFIuC0E0xuMr/zSJVmkXww05j6Ao8kCxnBJpPuat7ZoFx1624OtEq8Bak2Kv3zDwBoDspf/WFEEkGlIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUokF1X6a3zpDp1YZojBStqRBufp7IsVC66kIbKfAZqyXvUz8z+slJrzyUybjxFBJ5ovChCMToexxNGSKEsOnlmCimL0VkTFWmBgbT8mG4C2/vEraF3XPrXv3No1rmKMIJ1CBGnhwCQ24hSa0gMAYnuAFXh3hPDtvzvu8teAsZo7hD5zPH+6Ljvg=</latexit><latexit sha1_base64="k2Gtb5Vy1XCfuk+6GicE2CxElfQ=">AAAB63icbVBNSwMxEJ31s9avqkcvoUWoCGXXix6LXrxZwX5Au5Rsmm1Dk+ySZIVl6V/woqCIV/+Qt/4bs20P2vpg4PHeDDPzgpgzbVx36qytb2xubRd2irt7+weHpaPjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Db3209UaRbJR5PG1Bd4KFnICDa5dF/1zvuliltzZ0CrxFuQSr3cu3id1tNGv/TdG0QkEVQawrHWXc+NjZ9hZRjhdFLsJZrGmIzxkHYtlVhQ7WezWyfozCoDFEbKljRopv6eyLDQOhWB7RTYjPSyl4v/ed3EhNd+xmScGCrJfFGYcGQilD+OBkxRYnhqCSaK2VsRGWGFibHxFG0I3vLLq6R1WfPcmvdg07iBOQpwCmWoggdXUIc7aEATCIzgGd7g3RHOi/PhfM5b15zFzAn8gfP1A/f1kH4=</latexit><latexit sha1_base64="k2Gtb5Vy1XCfuk+6GicE2CxElfQ=">AAAB63icbVBNSwMxEJ31s9avqkcvoUWoCGXXix6LXrxZwX5Au5Rsmm1Dk+ySZIVl6V/woqCIV/+Qt/4bs20P2vpg4PHeDDPzgpgzbVx36qytb2xubRd2irt7+weHpaPjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Db3209UaRbJR5PG1Bd4KFnICDa5dF/1zvuliltzZ0CrxFuQSr3cu3id1tNGv/TdG0QkEVQawrHWXc+NjZ9hZRjhdFLsJZrGmIzxkHYtlVhQ7WezWyfozCoDFEbKljRopv6eyLDQOhWB7RTYjPSyl4v/ed3EhNd+xmScGCrJfFGYcGQilD+OBkxRYnhqCSaK2VsRGWGFibHxFG0I3vLLq6R1WfPcmvdg07iBOQpwCmWoggdXUIc7aEATCIzgGd7g3RHOi/PhfM5b15zFzAn8gfP1A/f1kH4=</latexit><latexit sha1_base64="qw+XdynGm6NTsSDR/q8RhDC1eTU=">AAAB63icbVBNSwMxEJ31s9avqkcvwSLUS8l60WPRizcr2A9ol5JNs21okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemAhuLMbf3tr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNObnO/88S04bF6tNOEBZKMFI84JTaX7mv+xaBSxXU8B1olfkGqUKA5qHz1hzFNJVOWCmJMz8eJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wydO2WIoli7UhbN1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10XWQcZWklim6WBSlAtkY5Y+jIdeMWjF1hFDN3a2Ijokm1Lp4yi4Ef/nlVdK+rPu47j/gauOmiKMEp3AGNfDhChpwB01oAYUxPMMrvHnSe/HevY9F65pXzJzAH3ifP9wMjW8=</latexit>

Efficiency

Diagram Key:
•P -> Q means P is
the parent of Q

•Thin dashed line =
long fur

•Dotted line =
short fur

•Thick line = curly
fur

CREATE TABLE dogs AS
 SELECT "A" AS name, "long" AS fur UNION
 SELECT "B" , "short" UNION
 SELECT "C" , "long" UNION
 SELECT "D" , "long" UNION
 SELECT "E" , "short" UNION
 SELECT "F" , "curly" UNION
 SELECT "G" , "short" UNION
 SELECT "H" , "curly";

