DATA C88C Final Reference Sheet Page 1 of 2

A tree has a root value
and a list of branches
eEach branch 1s a tree

A tree with zero branches
1s called a leaf

Relative description:
eEach location 1s a node
eEach node has a value
eOne node can be the
parent/child of another

class Tree:

def init (self, value, branches=[]): Built—in isinstance

self.value = value
for branch 1n branches:

assertiisinstance(branch, Tree)'< is or inherits from Tree

function: returns True 1f
branch has a class that

self.branches = 1ist(branches) =~ N y
def is leaf(self): 3
return not self.branches 1 — \\\\\\\2
def leaves(tree): T
"""The leaf values in a tree.""" 1 1

if tree.is leaf():
return [tree.valuel
else:
st = []
for b 1in tree.branches:
lst.extend(leaves(b))
return lst

Tree(3,
[Tree(1), Tree(2,
[Tree(1), Tree(1)]1)])

def fib tree(n):

1f n == 0 or n ==
return Tree(n)

else:
left = fib _tree(n - 2)
right = fib_tree(n - 1)
fib_n left.value + right.value
return Tree(fib_n, [left, right])

Exceptions are raised with a raise statement.

ralise <expr>

<expr> must evaluate to a subclass of BaseException or an instance of one.

Python object system:

Idea: ALl bank accounts have a balance and an account holder:
the Account class should add those attributes to each of 1ts i1nstances

S class

'Jim'

When a class 1s C

1.A new 1nstance of that class 1s created:
method of the class 1s called with the new object as 1its first

2.The 1nit_

alled:

>>> a.holder

“/ === a.balance

" A new instance is —>>7> @ = Account(ljiml)
created by calling a

An account i1nstance

balance: 0 holder: 'Jim[

argument (named self), along with any additional arguments provided in the

call expression

class Account:

self should alw
bound to an 1nst

subclass of Ac

o

the Account class or a

ays be
ance of

count

-

. parentheses

arguments within

-

arguments with
parentheses

Method invocation:

N\

[

the dot and other >>>3ia.deposit(2)

-

4 def init (self, account holder): .
__1nit_ 1s called a self.balance = 0 R o g
constructor self.holder = account_holder
. ~/ def deposit(self, amount):
- - self.balance = self.balance + amount

~—— return self.balance
def withdraw(self, amount):
1if amount > self.balance:
return 'Insufficient funds'
P self.balance = self.balance - amount
return self.balance

>>> type(Account.deposit)

N
Function call: all| <class 'function'>
>>> type(a.deposit)
<class 'method'>

>>> Account.deposit(a, 5)
One object before | 10 .~ .

in 125 """""""""""

§<{: Call expression j

try:
<try suite>

except <exception class> as <name>:
<except suite>

The <try suite> 1s executed first.

If, during the course of executing the
<try suite>, an exception 1s raised
that is not handled otherwise, and

If the class of the exception inherits

>>> try:
x =1/ 0
except ZeroDivisionError as e:
print('handling a', type(e))
X = 0

handling a <class 'ZeroDivisionError'>
>>> X

©

from <exception class>, then

The <except suite> 1s executed, with <name> bound to the exception.

class Link: _ Some zero
empty =:() < length sequence

def _ init_ (self, first, rest=empty): /’
assert rest 1s Link.empty or rest: mst:’////’

isinstance(rest, Link)

self.first = first
self.rest = rest

def _ repr__(self):

Link 1nstance Link 1nstance

first: 4 first: 5

>>> s = Link(4, Link(5))

>>> §

Link(4, Link(5))
>>> g, first

1f self.rest: 4

rest = ', ' + repr(self.rest) >>> 5, rest
else: Link(5)

rest = "' >>> print(s)
return 'Link("' + repr(self.first) + rest + ')’ (4 5)

def str (self):
string = ' ('

while self.rest 1s not Link.empty:

>>> print(s.rest)
(5)

>>> s.rest.rest 1s
Link.empty

True

string += str(self.first) + ' '

self = self.rest

return string + str(self.first) + ')

<expression> .

<name=

The <expression> can be any valid Python expression.

The <name> must

be a simple name.

Evaluates to the value of the attribute looked up by <name> 1in the object

that 1s the value of the <expression=.

To evaluate a do

t expression:

1. Evaluate the <expression> to the left of the dot, which yields
the object of the dot expression

2. <name> 1s matched against the instance attributes of that object;
1f an attribute with that name exists, 1ts value 1s returned

3. If not, <name> 1s looked up in the class, which yields a class

attribute va

lue

4. That value 1s returned unless 1t 1s a function, 1n which case a
bound method 1s returned instead

Anatomy of a recursive function:

- The def statement header is like
any function

Conditional statements check for
base cases

-Base cases are evaluated

without recursive calls
-Recursive cases are evaluated
with recursive calls

def sum digits(n):
"Sum the digits of positive integer n."
if n < 10:
return n
else:
all but last, last = n // 10, n % 10
return sum digits(all but last) + last

-Recursive decomposition: finding def
simpler instances of a problem.
-E.g., count_partitions(6, 4)
-Explore two possibilities:

Use at least one 4

Don't use any 4
- Solve two simpler problems:

- count_partitions(2, 4)

- count_partitions(6, 3)
- Tree recursion often 1involves
exploring different choices.

count partitions(n, m):

1f n ==
return 1

elif n < O:
return O

elif m ==
return O

else:
with m = count partitions(n-m, m)
without m = count partitions(n, m-1)
return with m + without m

Assignment statements with a dot expression on their left-hand side affect
attributes for the object of that dot expression

e If the object 1s an instance, then assignment sets an instance attribute
e If the object 1s a class, then assignment sets a class attribute

-

.

attributes

attributes of

jim_account
g J

>>> j1m_account

>>> tom_account

>>> tom_account.
0.02

>>> j1m_account.
0.02

>>> Account. 1nte
>>> Tom_account.
0.04

>>> ji1m_account.
0.04

Account c1a55}>> interest: 0302 004 0.05

(withdraw, deposit,

init)

p
Instance ‘¥>> balance: 0

holder: 'Jim
interest: 0.08

-

_

Account('Jim')
Account('Tom")
1nterest

1nterest

rest = 0.04
1nterest

1nterest

Instance ‘¥:> balance: 0

attributes of holder: 'Tom'
tom account

/

>>> jim_account.interest = 0.08
>>> jilm_account.interest

0.08

>>> tom_account.interest

0.04

>>> Account.1interest = 0.05

>>> tom_account.interest

0.05

>>> jlm_account.interest

0.08

>

class CheckingAccount (Account):

""UA bank account that charges for withdrawals."""

withdraw_ fee
interest = 0
def withdraw

=1
.01
(self, amount):

o™ =

\ _________________ .

"return Account.withdraw(self, amount + self.withdraw fee)

amount + self.withdraw_fee)/

To look up a name 1n a class.:
1. If 1t names an attribute in the class, return the attribute value.
2. Otherwise, look up the name 1in the base class, 1f there 1s one.

>>> ch = CheckingAccount('Tom")

>>> ch.1nterest
0.01

>>> ch.deposit(20)

20

>>> ch.withdraw(5)

14

Calls Account. 1init_

Found 1n CheckingAccount

Found 1n Account

Found 1n CheckingAccount

DATA C88C Final Reference Sheet Page 2 of 2

iter(iterable):
Return an 1iterator
over the elements of
an 1terable value

next(iterator):

Return the next element

>>> s = [3, 4, 5]
>>> iter(s)
>>> next(t)

3

>>> next(t)

4

>>> d = {'one': 1, 'two': 2,
>>> k = iter(d)

>>> next(k)

'one’ >>> next(v)
>>> next(k) 1

' two ! >>> next(v)

2

'three': 3}

>>> v = iter(d.values())

A generator function 1s a function that yields values instead of returning.
>>> t = plus_minus(3) def a_then_b(a, b):

>>> def plus_minus(x):

def perms(lst):
"""Generates the permutations of lst one by one.
>>> perms = perms([1, 2, 31)
>>> p = list(perms)
>>> p.sort()

yield X >>> next(t) yield from a
yield -X 3 yield from b
>>> next(t) >>> list(a_then_b([3, 41, [5, 6]))
-3 [3, 4, 5, 6]
Efficiency

Constant growth. E.g., accessing a value from a dictionary.
Increasing n doesn't affect time

Logarithmic growth. E.g., binary search

Doubling n only increments time by a constant

Linear growth. E.g., iterating over a list of length n
Incrementing n increases time by a constant

Quadratic growth. E.g., finding all pairs of a list of
integers (double for loop)

Incrementing n increases time by n times a constant

Exponential growth. E.g.,

recursive fib

Incrementing n multiplies time by a constant

>>p [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 11, [3, 1, 21, [3, 2, 1]]
if lst == []:
yield []
else:
for perm in perms(lst[1:]):
for i in range(len(lst)):
yield perm[:i] + [lst[@]] + perm[i:]
_[A table has columns and rows 1 N
Latitude Longitude Name <(A column
has a
38 122 Berkeley name and
42 71 Cambridge a type
J
/\ 45 93 Minneapolis

[A row has a value for each column j

SELECT :[expression] AS [name], [expression] AS [name], ... ;

SELECT [columns] FROM [table] WHERE [condition] ORDER BY [order];

CREATE TABLE parents AS Diagram Key:

SELECT "D" AS parent, "H" AS child UNION P —> Q means P is

SELECT "A" , 'B" UNTON the parent of Q

SELECT "A" oo JNION e Thin dashed line =

SELECT “F" AN UNION tong fur.

_ d eDotted line =

SELECT "F" , "'D" UNTON short fur

SELECT "F" , G" UNION e Thick line = curly

SE_ECT IIEII , IIFII; fur
CREATE TABLE dogs AS - — -

SELECT "A" AS name, "long" AS fur UNION I A

SELECT "B" , "'short" UNTON |

SELECT "C" , 'long" UNION /. \\

SELECT "D" , long" UNION e

SELECT "E" , 'short" UNTON "B =1

SELECT "F" , "curly" UNION =

SELECT "G" , 'short" UNTON

SELEC 4 yCurly’; first second

B C

SELECT a.child AS first, b.child AS second A D

FROM parents AS a, parents AS b

WHERE a.parent = b.parent AND a.child < b.child; A G

D G

String values can be combined to form longer strings

sglite> SELECT "hello,"™ || " world";
hello, world

Basic string manipulation 1s built into SQL, but differs from Python

sqlite> CREATE TABLE phrase AS SELECT "hello, world" AS

FROM phrase;

low

S,

sqlite> SELECT substr(s, 4, 2) || substr(s, instr(s, " ") + 1, 1)

The number of groups 1s the number of unique values of an expression

A HAVING clause filters the set of groups that are aggregated

SELECT weight / legs, COUNT(x) FROM animals
GROUP BY weight / legs
HAVING COUNT(x) > 1;

kind legs weight
wleightl COUNT() weight/legs=5 dog 4 20
egs _
» weight/legs=2 cat 4 10
4
5 2 ,*
e’ -~ welght/legs=2 ferret 4 10
2 2 ol : arrot
weight/legs=3 P 2 6
weight/legs=5 penguin 2 10
weight/1egs=6000 | t-rex 2 12000

An aggregate function in the [columns] clause computes a value from a

group of rows:

+ MAX([expression]) evaluates to the largest value of [expression] for

any row 1n a group
* COUNT(*) evaluates to the number of rows in a group

- MIN, SUM, & AVG are also aggregate functions similar to MAX

With no GROUP BY clause, aggregation 1s performed over all rows:

SELECT MAX(legs) FROM animals; MAX(legs)

4

