DATA C88C Midterm Reference Sheet - Page 1 of 2

208

Dictionary Methods
[mu}fadd(Z, mul(4, 6)), gdd(3, 5))}

>>> food = {“ham":10, “cheese”:12}

[Import statement]
..................... \V A

from math import pi Arobalsraney P — : >>> food["cheese"]
=>2itau =2 *pi [Name >p' '::3-1416:3<Value] . . A iz> "peanuts" in food
/\ /\ mul 26 g False
[Assignment statement] (Binding) [add(Z, mul(4, 6”} [add(B, 57} >>> food_["peanuts"] =] # adds key-
bt : | i by b value pair to food dict

>>> '"peanuts" 1n food

Code (left): Frames (right):

True

1 “
O @

.(,x o ‘ .'x 1 1 _ 1 1
Statements and expressions A name 1s bound to a value add 2 24 ada 3 . ZZ: :833{..[::%.} = food["ham™] + 1
Red arrow points to next Lline. | (—%u1(4, é;j 11
Gray arrow points to the line In a frame, there 1s at most A A Y >>> [(key, food[keyl) for key in
just executed one binding per name 4 : R food]
“ y > [("ham', 11), (‘cheese', 12),
mu 4 0 ('peanuts', 7)1

from operator import mul

def square(x): List comprehensions

= return mul (x, Xx)
square(-2) [Built-1n tunction j [<map exp> for <name> in <iter exp> if <filter exp>]
Global frame funcmul()[parentzg’LO;;l] Short version: [<map exp> for <name> in <iter exp>]
4 . . A ';::::::::::::::::::::::::::; A combined expression that evaluates to a list using this evaluation
Intrinsic name of mul - func square(x) [parent=Global]: procedure:
function called square S A1 1. Add a new frame with the current frame as its parent

User—-defined Create an empty result list that is the value of the expression

2.
£1-0 F t=Clobal } function 3. For'gach element 1in the iterablg value of <iter exp>:
. Square ;[parent=Globa]‘{<{: Local frame :)‘\ / A. Bind <name> to that element in the new frame from step 1

I 2
’
1
1

[F . : i x -2} B. If <filter exp> evaluates to a true value, then add the value of
offidt parameter ﬁliﬁfhmhlgfr A <map exp> to the result list
bound tg salue 4 1T Return value is
argument et ' not a binding! . . : :
N \ J) List Methods List Environment Diagram
>>> 1st = [8, 61] >>> digits = [1, 8, 2, 8]
from operator import mul Global frame >>> |st.append(10) >>> len(digits) list
def square(x):‘ ------ mul >>> st 4 . e 1 2 3
=) return mul (x, Xx) square [8, 61, 10] . digits[3] digits L 1 2 8
square(square(3)) >>> lst.extend([2, 3]) g
>>> 1st >>> digits[1:]
[8, 61, 10, 2, 3] (8, 2, 8]
A name evaluates to >>> lst.insert(0, 88) >>> [2, 7] + digits * 2
the value pound to >>> 1st 2. 7. 1. 8, 2. 8, 1. 8, 2. 8]
that name in the (88, 8, 61, 10, 2, 3] oo e s mnm e
earliest frame of the f2: square [parent=Global] >>> 1st[1:3] :
current environment | (8, 61] >>> pairs = [[10, 20], [30, 40]]
in which that name is X 9 >>> 1st.pop(0) >>> pairs[1] list list
found. [30, 40] -
81 338 . pairs {_:~—,>.0 0 1
>>> st >>> pairs[1]]0] < | 10 | 20
Evaluation rule for call ex ' : [8, 61, 10, 2, 3] 30
pressions:
| >>> 1st.remove(61) -
1.Evaluate the operator and operand subexpressions. >>> st e
2.Apply the function that is the value of the operator [8, 10, 2, 3] ’ :
subexpression to the arguments that are the values of the >>> 1st.pop() e
operand subexpressions. 3
Applying user-defined functions: T§> }gt 3

1.Create a new local frame with the same parent as the

function that was applied. ' “ " : _
2.Bind the arguments to the function's formal parameter names L1sts “Aggregate” Methods Executing a Tor statement:
in that frame. >>> st = [-2, 4, 6] for <name> in <expression>:
3.Execute the body of the function in the environment >>> len(1lst) <suite>
beginning at that frame. 3 |
>>> sum(1lst) 1. Evaluate the header <expression>,
Execution rule for def statements: 8 which must yield an iterable
1.Create a new function value with the specified name, formal >>> min(1lst) value (a list, tuple, iterator,
parameters, and function body. —2 etc.) |
2.Its parent is the first frame of the current environment. >>> max(lst, key=lambda x: -x) 2. For each element 1n that
3.Bind the name of the function to the function value in the —2 sequence, 1n order: |
first frame of the current environment. >>> st = [(1, 9), (2, 5), (3, 4)] A. Bind <name> to that element 1n
>>> max(lst, key=lambda y: y[0] * y[1]) the current frame
Execution rule for assignment statements: (3, 4) B. Execute the <suite>
1.Evaluate the expression(s) on the right of the equal sign.

2.S51multaneously bind the names on the left to those values,

. . . "y _31 _21 _11 @r 11 21 31 41
in the first frame of the current environment.

Miscellaneous Operations

Execution rule for conditional statements: (=2 2) >>> 5 // 3 >>>min(2, 1, 4, 3)
| | | range (-2, 1
Each clause is considered in order. 1
1.Evaluate the header's expression. >>> 5 % 3 >>> max(2, 1, 4, 3)

Length: ending value - starting value
2.If it is a true value, execute the suite, then skip the 2 4

remaining clauses in the statement. Element selection: starting value + index >>> 2 k 3 Z>> abs(-2)
: : 6
Evaluation rule for or expressions: <{:List ConStFUCtorCJ >>> 2 4+ 3 >>> pow(2, 3)
1.Evaluate the subexpression <left>. >>> list(range(-2, 2)) 5 8
2.If the result is a true value v, then the expression [-2, -1, 0, 1] N | >>> 6/ 3 >>> len('word")
evaluates to v. Range with a 0 2.0 4
3.0therwise, the expression evaluates to the value of the >>> list(range(4)) starting value >>> print(1, 2)
subexpression <right>. 0, 1, 2, 3] / 1 2
Evaluation rule for and expressions: _ _ _
1.Evaluate the subexpression <left>. Functional List Operations
2.1f the result 1s a false value v, then the expression map(func, iterable) | filter(func, iterable) >>> nums = [1, 2, 3]
evaluates to v. Returns an iterator Returns an iterator from | >>> list(map(lambda x: X ** 2, nums))
3.0therwise, the expression evaluates to the value of the that applies func to | elements of iterable for | [1, 4, 9]

>>> list(filter(lambda x: x % 2 ==

[2]

>>>
reduce(func, iterable[, initial]) SSS

Apply func of two arguments cumulatively to >s>
the items of iterable, from left to right, so 6
as to reduce the iterable to a single value.

, nums))

every 1item which func returns True.

' <ri] >,
subexpression <right of iterable.

from functools import reduce
add = lambda x, y: X + vy
reduce(add, nums) # 1 + 2 + 3 = 6

Evaluation rule for not expressions:

1.Evaluate <exp>; The value is True 1f the result 1s a false
value, and False otherwise.

Execution rule for while statements:
1.Evaluate the header’s expression.
2.If it is a true value, execute the (whole) suite, then return
to step 1.

>>>

16

reduce(add, nums, 10) # 10 + 1 + 2 + 3 = 16

If the optional initial value is present, it
is placed before the items of the iterable in
the calculation.

-

DATA C88C Midterm Reference Sheet - Page 2 of 2

square =:lambda Xx,y: X * y

A function

with formal parameters x and y

Evaluates to a function.
No "return" keyword!

\

that returns the value of "x{ x y":

~

(: Must be a single expression :r

L e b N N

--

A 3

g - e e e e e e e e Y,

return adder

return k + p

1

f The name add_three 1s bound
to a function

L

N
A local

def statement
Y,

'Y Can refer to names in the
enclosing function

\

J

def square(x):
return X x X

VS

square = lambda x: X * X

e Both create a function with the same domain, range, and behavior.

e Both functions have as their parent the environment in which they
were defined.

e Both bind that function to the name square.

e Only the def statement gives the function an intrinsic name.

e Every user—-defined function has
a parent frame (often global)

e The parent of a function is the
frame 1in which it was defined

eEvery local frame has a parent

frame (often global)

e The parent of a frame 1s the
parent of the function called

-

L4 ~
-~
-~

. def make_adder(n):

k. def adder (k) :

—\

Nested
def

-
-

\—

add _three =
add _three(4)

return K + n,,
return adder

make_adder(B)E

-

_

A function’s signature

has all the information
to create a local frame

R f1:

*
\d
.
.

f2:

make adder

Global frame

make_adder
add_three

[parent=G]

V

func make adder(n) [parent=Global]

When a function 1s defined:
1. Create a function value: func <name>(<formal parameters=)
2. Its parent 1s the current frame.

fl: make_ adder func adder (k) [parent=f1l]

3. Bind <name> to the function value in the current frame
(which is the first frame of the current environment).

When a function 1is called:

Add a local frame, titled with the <name> of the function being called.
Copy the parent of the function to the local frame: [parent=<label>]
Bind the <formal parameters> to the arguments in the local frame.
Execute the body of the function in the environment that starts with the
local frame.

~WN PR

def print _sums(n):
print(n)
def next sum(k):
return print_sums(n+k)
return next sum

......................

—) print sums(l) (3) (5)

Printed output:

1
4

Return 7
value

9

Global frame func print_sums(n) [parent=Global]

print_sums

func next _sum(k) [parent=f1]

Python object system:

Idea: ALl bank accounts have

-~

A new 1nstance
1s created by
calling a class

-

</

TT>ass g = Account (

>>> a,holder
'Jim’

>>> a.balance
0

When a class 1s called:

1.A new instance of that class 1s created:

2.The 1nit_

-~

_1nit 1s called
a constructor

</

lass Account:

-~

N

def __init__(self, account_holder):
self.balance ‘
self.holder

'Jim")

a balance and an account holder:
the Account class should add those attributes to each of 1ts i1nstances

An account 1nstance

balance:

1 4

0

def deposit(self, amount):

self should always be

self.balance

~— return self.balance
def withdraw(self, amount):

-

arguments within
parentheses

holder:

method of the class 1is called with the new object as itsé
first argument (named self), along with any additional arguments '
provided in the call expression.

account holder

'Jim’

self.balance + amount

func next _sum(k) [parent=f3]

func next _sum(k) [parent=f5]

f4: next _sum [parent=f3]

-l

k

f5: print_sums [parent=Global]

n 9

next sum

Return
value

Falsy values: 0, 0.0, False, None, empty data
structure (e.g. string/list/dict/tuple)

Anything else 1s truthy.

bound to an instance 1T amount > self.balance: >>> 1f 0: >>> if 1 and 0:
of the Account class return 'Insufficient funds' e print (' *") . print("*")
or aASUbCIatSS of self.balance = self.balance - amount et L >>> if 1 or 0O:
ccoun return self.balance : praint("*") : prant (%)
N / >>> if abs: >>> if 1 or 1/0:
. . rint("*’ rint('*'
g >>> type(ACCOUHt.depOSlt) * P () * P ()
Function call: <class 'function'>
atl a_rgu_ments e type(a.dep051t) from operator import floordiv, mod
Wlthhln <class 'method’> def di\p/ide exactl(an d): ’
_ parentheses \ "tiReturn the guotient and remainder of dividing N by D.
- >>>1{q, r = divide_exact(2012, 10) < Multiple assignment
?;> Account.deposit(a, 5) o> <[to two names
g7 s e st n s | 201
4 >SS g, 1t (2 i A >>>
tethod invocation: > [2+0eposit(2) < | : \
One object before 12 A ’ Call expression i e Two return values,
the dot and other ' S y return ifloordiv(n, d), mod(n, d) separated by commas)
