
Computational Structures in Data Science

Lecture 2:
Abstraction and Functions

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

Introduction

Hi! I’m Isabelle Ng (Head TA, Senior in CS/DS/Music)

•Interests: LLM dev, HCI, NLP, AI Research, Consulting/PM

Announcements

•Join the EECS 101 and DATA 001 Ed Discussions!

• https://eecs.link/join-ed

•https://eecs.link/data-ed

•Hopefully not needed! Please, report any concerns about class /
campus climate to the department, CS or DS. You are welcome
here!

•https://eecs.link/climate

https://eecs.link/join-ed
https://eecs.link/join-ed
https://eecs.link/join-ed
https://eecs.link/data-ed
https://eecs.link/data-ed
https://eecs.link/data-ed
https://eecs.link/data-ed
https://eecs.link/climate
https://eecs.link/climate

Announcements

Assignments

• Lab 0: Due Friday 9/5

• Lab 1: Due Friday 9/5

• Homework 1: Due Wednesday 9/10

• Keep up with the class!

Sections have expanded

• Please only attend 1 section

• Attendance will be taken starting next week

Links

•Q&A Thread: https://go.c88c.org/qa2

•Self-Check: https://go.c88c.org/2

https://go.c88c.org/qa2
https://go.c88c.org/2

Computational Structures in Data Science

Abstraction

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

Abstraction

•Detail removal

“The act of leaving out of
consideration one or more
properties of a complex object so
as to attend to others.”

•Generalization

“The process of formulating
general concepts by abstracting
common properties of instances”

•Technical terms: Compression,
Quantization, Clustering,
Unsupervized Learning

Henri Matisse “Naked Blue IV”

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

Experiment – Where are you from?

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

Where are you from?

Possible Answers:

•Planet Earth

•Europe

•California

•The Bay Area

•San Mateo

•1947 Center Street, Berkeley, CA

•37.8693° N, 122.2696° W

All correct but different levels of abstraction!

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

Detail Removal (in Data Science)

•You’ll want to look at only the
interesting data, leave out the
details, zoom in/out…

•Abstraction is the idea that you
focus on the essence, the cleanest
way to map the messy real world
to one you can build

•Experts are often brought in to
know what to remove and what to
keep!

The London Underground 1928 Map &
the 1933 map by Harry Beck.

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

The Power of Abstraction, Everywhere!

•Examples:

•Math Functions (e.g., sin x)

•Hiring contractors

•Application Programming Interfaces
(APIs)

•Technology (e.g., cars)

•Amazing things are built when these
layer

•And the abstraction layers are
getting deeper by the day!

Abstraction Barrier (Interface)
(the interface, or specification, or contract)

Below the abstraction line

This is where / how / when / by whom it is
actually built, which is done according to
the interface, specification, or contract.

We only need to worry about the
interface, or specification, or contract

NOT how (or by whom) it’s built

Above the abstraction line

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

Abstraction: Pitfalls

•Abstraction is not universal without loss of information
(mathematically provable). This means, in the end, the
complexity can only be “moved around”

•Abstraction makes us
forget how things actually
work and can therefore
hide bias. Example: AI and
hiring decisions.

•Abstractions can formalize a design or pattern. When something
doesn't follow that pattern–perhaps a new use case emerges–it
can be a burden to adapt.

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

Data or Code? Abstraction→ Take CS61C

Compiler or Interpreter

Here: Python

Human-readable code
(programming language)

Machine-executable
instructions (byte code)

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

Computers Are Built On Abstractions

•Big Idea: Layers of Abstraction

–The GUI look and feel is built out of files, directories, system code, etc.

Review:

•Abstraction:

•Detail Removal or Generalizations

•Code:

•Is an abstraction!

Computer Science is the study (and building) of abstractions

Computational Structures in Data Science

Michael Ball | UC Berkeley | © CC BY-NC-SA

Python:
Expressions and Statements

Learning Objectives

• Evaluate expressions in Python

• Name data so it can be used later.

• Get practice with the Python Interpreter

Demo!

• Run the Python interpreter (python3) on your computer

• Practice seeing the results of expressions

• Use Control-L to clear the screen

• Use Control-D or type exit() to exit Python.

• The interpreter does not save any work!

Let’s talk Python

Expression

Call expression

Variables

Assignment Statement

Define Statement

Control Statements

Comments

8 * 11

max(88, 61)

greeting

greeting = <expression>

def name(<arguments>):

if, else, for, while …

Text are a # is
ignored.

Expressions

An expression is code that produces or evaluates to a value.

A call expression simply means that expression involves calling a
function.

8 * 11

8 + 80

max(88, 61)

len('Berkeley')

Names and Statements

• Statements are code that does something, but does not produce
a value!

• Assignment Statements bind some value to a name which can be
used later. (A variable)

print('Welcome to 88C!')

course = '88C'

print('Welcome to ' + course + '!')

Numbers (int and float)

• Numbers come in two types: integers, and decimals

• Why? Partially historical reasons, partially for speed

• Python is forgiving!

• In most cases you can mix them up just fine.

• Numbers support many common operations:

• +, -, /, *, ** (power), % (modulus), // (floor division)

• Try: import math

• Lots of math examples

https://docs.python.org/3/library/math.html

Strings and Text

• Data inside quotes "" is called a string

• Python allows single quotes or double quotes

• Strings support useful operations like concatenation with +

• "f-strings" allow us to nicely format text

• f"Hello, {course}!"

• f"2 times 2 is {2*x}"

Boolean Expressions

•Booleans are Yes/No values.

•In Python: True and False

•>, <, ==, !=, >=, <=, and, or

•Note the the "double equals"

•These expressions all return only True or False.

• 3 < 5 # returns True

• You can write 3 < 5 == True – but this is redundant.

•We'll keep practicing over time

Boolean Expressions: and, or

• And and Or tell us the result of combining Boolean expressions

• and evaluates to True when both a and b are True

• or evaluates to True when either a or b is True

Expression Result

True and True True

True and False False

False and True False

False and False False

Expression Result

True or True True

True or False True

False or True True

False or False False

Statements and Expressions: Review

• Expressions evaluate to a result

• We can combine expressions for more complex problems

• We assign names to values using =

Live Coding Demo

•Open Terminal on the Mac

•Type python3

•We are now in the "interpreter" and can type code.

•Python runs each line of code as we type it.

• After each line, we see a result. This happens only in the interpreter.

• It's a very useful calculator.

•We can also run files!

•python3 -i 02-Functions.py

• -i : This means open the interpreter after running the file. It's optional

•python3 ok …

• This runs the file "ok" which is included with each lab / homework.

Computational Structures in Data Science

Function Definitions

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

Defining Functions

•Abstracts an expression or set of statements to apply to lots of
instances of the problem

•A function should do one thing well

expression

def <function name> (<argument list>) :

return

Functions: Example

•Let’s write a simple function which returns 8 more than the number.

•We will call this function by writing add_8(80).

• Inside, the name num will become the value 80.

def add_8(num):

 """add 8 to the input num

 >>> add_8(80)

 88

 """

 return 8 + num

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

Functions in Python

•We "define" them with def

•We typically name_them_using_underscores ("Snake case")

•The first line ends in a :

•The body is indented by 4 spaces (or 1 tab)

•Arguments (parameters) create 'names' that exist only in our
function

• All functions return some value

• We usually use return

• If we omit return, the value is None

Function Arguments

• When we define a function, we provide 0 or more arguments

• Arguments define names that exist only within the function

• When we call a function, we pass parameters to the function

• Each parameter is mapped 1-to-1, left-to-right to an argument

def is_even(x):

 return x % 2 == 0

is_even(2)

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

Functions: Example

>>> y = 5

>>> x = 3

>>> z = max(x, y)

>>> z

5
def max(x, y):

 if x > y:

 return x

 else:

 return y

How to Write a Good Function

•Give a descriptive name

•Function names should be lowercase. If necessary, separate
words by underscores to improve readability. Names are
extremely suggestive!

• Chose meaningful parameter names

• Again, names are extremely suggestive.

Live Coding Demo

• Make and call simple functions

Computational Structures in Data Science

Functions and Environments

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

Functions: Calling and Returning Results

Python Tutor

def max(x, y):
 return x if x > y else y

x = 3
y = 4 + max(17, x + 6) * 0.1
z = x / y

Michael Ball | https://c88c.org/ UC Berkeley | © CC BY-NC-SA

http://pythontutor.com/composingprograms.html#code=def%20max%28x,%20y%29%3A%0A%20%20%20%20return%20x%20if%20x%20%3E%20y%20else%20y%0A%20%20%20%20%0Ax%20%3D%203%0Ay%20%3D%204%20%2B%20max%2817,%20x%20%2B%206%29%20*%200.1%0Az%20%3D%20x%20/%20y&cumulative=true&mode=edit&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

	Slide 1: Lecture 2: Abstraction and Functions
	Slide 2: Introduction
	Slide 3: Announcements
	Slide 4: Announcements
	Slide 5: Links
	Slide 6: Abstraction
	Slide 7: Abstraction
	Slide 8: Experiment – Where are you from?
	Slide 9: Where are you from?
	Slide 10: Detail Removal (in Data Science)
	Slide 11: The Power of Abstraction, Everywhere!
	Slide 12: Abstraction: Pitfalls
	Slide 13: Data or Code? Abstraction→ Take CS61C
	Slide 14: Computers Are Built On Abstractions
	Slide 15: Review:
	Slide 16: Python: Expressions and Statements
	Slide 17: Learning Objectives
	Slide 18: Demo!
	Slide 19: Let’s talk Python
	Slide 20: Expressions
	Slide 21: Names and Statements
	Slide 22: Numbers (int and float)
	Slide 23: Strings and Text
	Slide 24: Boolean Expressions
	Slide 25: Boolean Expressions: and, or
	Slide 26: Statements and Expressions: Review
	Slide 27: Live Coding Demo
	Slide 28: Function Definitions
	Slide 29: Defining Functions
	Slide 30: Functions: Example
	Slide 31: Functions in Python
	Slide 32: Function Arguments
	Slide 33: Functions: Example
	Slide 34: How to Write a Good Function
	Slide 35: Live Coding Demo
	Slide 36: Functions and Environments
	Slide 37: Functions: Calling and Returning Results

