Computational Structures in Data Science

Lecture 4:
Sequences and for Loops




Announcements

Concurrent Enrollment / BGA Students:

-Working on expanding the class, should happen next week
- First ~15 who applied + accept will be admitted.

-Everyone else: Expanding the class by ~20 seats.

If you need access use the join link for Ed:
https://edstem.org/us/join/QMbsfr



Announcements

- https://go.c88c.org/4 -- Self Check

- https://go.c88c.org/qa4 -- Ed Thread

Please minimize talking and distractions.
- Sit off to the sides if you aren't using your devices for classs.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA


https://go.c88c.org/4

Computational Structures in Data Science

Iteration with wh1le Loops




Learning Objectives

-Use a while loop to repeat some task.

-Write an expression to control when a while loop stops executing

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-
SA



while Statement - Iteration Control

-Repeat a block of statements until a predicate expression is not
satisfied

- At the "end" of the body, we re-evaluate the expression, and
continue as long as it True

- Like conditionals and functions, we indent the body one level

<initialization statements>

while <predicate expression>.:
<body statements>

<rest of the program>

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Sum The Numbers

-This is a task we'll see many times!

« The sum of 1 to 10 (inclusive) is 55. A useless, but useful, fact.

total = 0

n =1

while n <= 10:
total += n
n += 1

print(total)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



While Loops and Text

- Index is the name used to track a position in some sequence.
- We can "index into" a string to get an individual letter
- text[0] == "H"

text = "Hello, C88C!"

index = 0

while index < len(text):
print(text[index])

index += 1 # Same as index = index += 1

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Sum The Numbers As a Function

def sum_to_n(n):

>>> sum_to_n(10)

55

o

total = 0O

i =1

while i <= n:
total += 1
i+=1

return total

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Sum The Numbers As a Function

def sum_to_n_down(n):

>>> sum_to_n_down(10)
55

total = 0O

while n > 0:
total += n
n -= 1

return total

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Computational Structures in Data Science

for Loops




Learning Objectives: Using Lists in Practice

-for Loops are a "generic” way to iterate over data.
- Compare a for loop and a wh1ile loop.

- Learn to use range ()

- Use a string as a sequence of letters

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



REVIEW: while statement - iteration control

-Repeat a block of statements until a predicate expression is
satisfied <initialization statements>

while <predicate expression>.
<body statements>

<rest of the program>

# Equivalent to a for loop:

text = "Hello, C88C!"

index = 0

while index < len(text):
letter = text[index]
print (letter)
index += 1

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



for Statement - Iteration Control

-Repeat a block of statements for a structured sequence of
variable bindings

<initialization statements>

for <variables> 1n <sequence expression>.
<body statements>

<rest of the program>

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Live Coding Demo

text = "Hello, C88C!"

index = 0

while index < len(text):
letter = text[index]
print (letter)

index += 1

for letter 1n text:

print (letter)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Live Coding Demo

index = 0

while index < 10:
print (1ndex)

index += 1

for index in range (0, 10):

print (1ndex)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Computational Structures in Data Science

Iteration with for Loops




Learning Objectives: Using Lists in Practice

-for Loops are a "generic” way to iterate over data.
- Compare a for loop and a wh1ile loop.

- Learn to use range ()

- Use a string as a sequence of letters

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



REVIEW: while statement - iteration control

-Repeat a block of statements until a predicate expression is
satisfied

<initialization statements>

while <predicate expression>.
<body statements>

<rest of the program>

text = "Hello, C88C!"

index = 0

while index < len(text):
letter = text[index]
print (letter)
index += 1

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



for Statement - Iteration Control

Repeat a block of statements for a structured sequence of variable
bindings

<initialization statements>

for <variables> 1in <sequence expression>.
<body statements>

<rest of the program>

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



<sequence expression> — What's that?

-Common sequences:
- range () - give me all the numbers
- Strings, e.g, "Hello, C88C!"
- What is it a sequence of? Characters!
. lists (next!)
‘We'll start with two basic facts:
- range (10) isthe numbers 0 to 9, or range(0, 10)

- for loops (transparently) iterate 1 item at time

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Comparing Loops

text = "Hello, C88C!"

index = 0

while index < len(text):
letter = text[index]
print (letter)

index += 1

for letter 1n text:

print (letter)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Live Coding Demo

index = 0

while index < 10:
print (1ndex)

index += 1

for index in range (0, 10):

print (1ndex)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Summing 1 to N (Again)

def sum_to_n(n):
total = 0

for num in range(0, n + 1):

total += num
return total

def sum_to_n_down(n):
total = 0O
for num 1in range(n, 0, -1):
total += num
return total

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Computational Structures in Data Science

Sequences




Sequences [Docs]

-The term sequence refers generally to a data structure consisting

of an indexed collection of values, which we'll generally call
elements.

‘That is, there is a first, second, third value (which CS types call
#0, #1, #2, etc.)

A sequence may be finite (with a length) or infinite.

-lt may be mutable (elements can change) or immutable.

-It may be indexable: its elements may be accessed via selection
by their indices.

-lt may be iterable: its values may be accessed sequentially from
first to last.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA


https://docs.python.org/3/library/stdtypes.html

<sequence expression> — What's that?

-Common sequences:
-range() - give me all the numbers
-Strings, e.g, "Hello, C88C!"
- What is it a sequence of? Characters!
lists (next!)
‘We'll start with two basic facts:
- range (10) isthe numbers 0 to 9, or range(0, 10)
- [] means "indexing" an item in a sequence.

« "Hello"[@] == "H"

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Common Sequences

-There are many types of sequences in Python.

- range
- string (text data)
- list
- tuple

- Sequences all share some common properties.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



range

-range () is a builtin Python tool that generates a sequence of
numbers.

-It does not return a list unless we explicitly ask for one.
-It has many options: start, stop, and step.

- Range is lazy! It can be iterated over, but doesn't compute all
its values at once.

‘We'll revisit this later.

-GOTCHA: Range is exclusive in the last value!
-range (10) is a sequence on 10 numbers from 0 to 9.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Sequence Operations

Operation Result

X in s

True if an item of s is equal to x, else False

X not in s

False if an item of s is equal to x, else True

s + t

the concatenation of s and ¢

S * N Oor n x s

equivalent to adding s to itself m times

s[i] ith item of s, origin O

s[i:7] slice of s from i to j
s[i:]:k] slice of s from i to j with step k
len(s) length of s

min(s) smallest item of s

max (s) largest item of s

s.index(x[, [, j11)

index of the first occurrence of x in s (at or after index i and before index j)

s.count(x)

total number of occurrences of xin s

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA




Live Coding Demo

sum(range(0, 11))

def sum_to_n(n):

return sum(range(0, n + 1))

text = 'Hello, C88C!'
len(text)
text.count('l")
text.count(8)
text.count('8"'")

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Computational Structures in Data Science




Learning Objectives

-Lists are a new data type in Python.

-Lists can store any kind of data and be any length.
-We start counting items of lists at 0.
-Lists are mutable. We can change their data!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



-A structure in Python that can hold many elements
-Also referred to an an “array” in other programming languages.

-Lists are used to group similar items together.
-A “contact list”, a “list of courses”, a “to do list”
-Python lists are really flexible!
-Can contain any type of data
-Can mix and match types!
-Can add and delete items

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Types We’ve Learned So Far

-Each type of data has a specific set of functions (methods) you
can apply to them, and certain properties you can access.

-int / Integers
1, -1, 0O, ..
float (“decimal numbers”)
1.0, 3.14159, 20.0
string
"Hello, CS88"
-function
‘max(), min(), print(), your own functions!
list
['CS88', 'DATA8', 'POLSCI2', 'PHILR1B']



List Operations [Python Docs!]

- [] "square brackets”: Used to access items in a list. We start at O!

len(): The number of items in a list
-+: We can add lists together
-min(), max(): Functions that take in a list and return some info.
-Converting between types: Strings and Lists:
<string>.split(<separator>) — Listof strings
«'T am taking CS88.'.split(' ")

<string>.join(<list>) — String, with the items of a list joined
together.

' '".join(['I', 'am', 'taking', 'C88C.'])
-Lots more interesting tools!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA


https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html

Selecting Elements From a List (A Reference, Don't

Memorize Yet!)

» Selection refers to extracting elements by their index.
- Slicing refers to extracting subsequences.

» These work uniformly across sequence types.
L = [2,0,9,10,11]

S = "Hello, world!"

L[2]==

L[-1] == L[len(t)-1] == 11

S[1] == "e" # Each element of a string is a one-element string.
L[1:4] == (L[1], L[2], L[3]) == (0, 9, 10)

S[1:2] == S[1] == "e"

S[0:5] == "Hello", S[0:5:2] == "Hlo", S[4::-1] == "olleH"

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Rules of Indexing & Slicing

-We start counting from 0.

‘You will mess this up. We all do. It's ok.
‘There's lots of bad dad jokes about this. ©
-Python provides flexibility but can be confusing.
-[0] means the first item
-[-1] means the last item, [-2] 2" to last, and so on
-Slicing: The last value is exclusive!
-[:stop], e.g. my_list[:5] # items 0-4
-[start:stop], e.g. my_1list[2:5] # items 2,3,4
-[start:stop:step] e.g. my_list[0:8:2] # items 0,2,4,6



Sequence Operations (Review and Reference)

Operation Result

X in s

True if an item of s is equal to x, else False

X not in s

False if an item of s is equal to x, else True

s + t

the concatenation of s and ¢

S * N Oor n x s

equivalent to adding s to itself m times

s[i] ith item of s, origin O

s[i:7] slice of s from i to j
s[i:]:k] slice of s from i to j with step k
len(s) length of s

min(s) smallest item of s

max (s) largest item of s

s.index(x[, [, j11)

index of the first occurrence of x in s (at or after index i and before index j)

s.count(x)

total number of occurrences of xin s

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA




Computational Structures in Data Science




Computational Structures in Data Science

List Comprehensions




Learning Objectives

-List comprehensions let us build lists "inline".

-List comprehensions are an expression that returns a list.
-We can easily “filter” the list using a conditional expression, i.e. i f

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Data-driven iteration

-describe an expression to perform on each item in a sequence

-let the data dictate the control
-In some ways, nothing more than a concise for loop.

[ <expr with loop var> for <loop var> in <sequence expr > ]

[ <expr with loop var> for <loop var> in <sequence expr >
if <conditional expression with loop var> ]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



