Computational Structures in Data Science

Lists & Higher Order Functions

Reminders

Reminders:

https://go.c88c.org/gab/ - Use during lecture!

nttps://go.c88c.org/s - self check (after lecture)

https://go.c88c.org/qa5/
https://go.c88c.org/qa5/
https://go.c88c.org/5

Computational Structures in Data Science

List Comprehensions

Learning Objectives

-List comprehensions let us build lists "inline".

-List comprehensions are an expression that returns a list.
-We can easily “filter” the list using a conditional expression, i.e. if

Data-driven iteration: List Comprehensions

-describe an expression to perform on each item in a sequence
-let the data dictate the control

-In some ways, nothing more than a concise for loop.
-Always returns a list!

[<expr with loop var> for <loop var> in <sequence expr >]

[<expr with loop var> for <loop var> in <sequence expr >
if <conditional expression with loop var>]

List Comprehensions vs for Loops

-List comprehensions always return a list!
-For loops do not return anything.

my_data = []

for item in range(10):
my_data.append(item)

my_data

or

my_data = [item for 1item in range(10)]

Why use list comprehensions?

- Transforming elements in a list
- Filtering a list
- Combining the two!

This is a surprising number of tasks!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Higher Order Functions

Learning Objectives

-Learn how to use and create higher order functions:

«Functions can be used as data
-Functions can accept a function as an argument
Functions can return a new function

10

Code is a Form of Data

-Numbers, Strings: All kinds of data

-Code is its own kind of data, too!

-Why?
-More expressive programs, a new kind of abstraction.
“"Encapsulate” logic and data into neat packages.

-This will be one of the trickier concepts in CS88.

11

What is a Higher Order Function?

-A function that takes in another function as an argument

OR

A function that returns a function as a result.

12

Brief Aside: import

-Python organizes code in modules

-These functions come with Python, but you need to "import" them.
-import module_name
- gives us access to module_name and module_name. x

import module_name as my_module

- can access my_module and my_module.x (same code, justa
different name)

from module_name 1import x, y, z
- can only access the functions we import. x is my_module. x

from math import pi, sqrt
from operator import mul

An Interesting Example

Y k=1+2+3+4+5
k=1

13423433 +43 +53

8

‘ 3 35 99 195

323

15

= 225

= 3.04

Why Higher Order Functions?

- We can sum 1 to N easily enough.

-We can sum 1 to NA2 easily enough too.
« Or we can sum, 1 to NA3...
- But why write so many functions?

Why not write one function(!) which allows us flexibility in solving
many problems?

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

A Generic Sum Function

def summation(n, term):
"""Sum the first N terms of a sequence.
>>> summation(5, cube)

225

>>> summation(5, identity)
15

>>> summation (10, -identity)
55

o

total = 0

for i in range(n + 1):
total = total + term(i)
return total

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Lambda Expressions

Learning Objectives

-Lambda are anonymous functions, which are expressions
-Don't use return, lambdas always return the value of the
expression.
‘They are typically short and concise
‘They don't have an “intrinsic” name when using an environment

diagram.
« Their name is the character A

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Why Use Lambda?

- Utility in simple functions! No "state", no need to "def"ine something

- Using functions gives us flexibility

- "Inline" functions are faster/easier to write, and sometimes require
less reading.

- They're not "reusable", but that's OK!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Function expression

“anonymous” function creation
lambda <arg or arg_tuple> : <expression using args>

Expression, Not a statement, NoO return or any other statement

add one = lambda v : v + 1 def add one(v):
return v + 1

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

>>> add 3 = lambda x: x + 3
>>> add 3 (1)
4

>>> list (map(lambda x: x + 3, [1,2,3,41))
(4, 5, o6, 7]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

More Python HOF's

« sorted - sorts a list of data
« MinN
¢ Max

All three take in an optional argument called key which allows us to control how
the function performs its action. They are more similar to filter than map.

max([1,2,3,4,5], key = lambda x: -x)
key is the name of the argument and a lambda is its value.

fruits = ["pear", "grape", "KIWI", "APPLE", "melon",
"ORANGE", "BANANA"]

sorted(key=1lambda x: x.lower())

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

More Python HOF's

« sorted - sorts a list of data
« MinN

* MaX

All three take in an optional argument called key which allows us to control how
the function performs its action. They are more similar to filter than map.

max([1,2,3,4,5], key
min([1,2,3,4,5], key

lambda x: -x)

lambda x: -x)

key is the name of the argument and a lambda is its value.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

HOFs That Operate on Sequences

Learning Objectives

Learn three new common Higher Order Functions:

-map, filter, reduce
-These each apply a function to a sequence (list) of data
-They are "lazy" so we may need to call list ()

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functional List Operations

«Goal: Transform a list, and return a new result
-We'll use 3 functions that are hallmarks of functional programming

-Each of these takes in a function and a sequence

map

filter

reduce

Transform every
item

Return a list with
fewer items

"Combine" items
together

1 (each item) Anything", a new

item
1 (each item) A Boolean
2 (current item, and Type should
i match the type
the previous result) _
each item

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

List: same length,
but possibly new
values

List: possibly fewer
items, values are
the same

A"single" item

Why Learn HOF's this way?

-Break a complex task into many smaller parts
- Small problems are easier to solve

- They're easier to understand and debug
-Directly maps to transforming data in lists and tables
- map: transformations, apply
- filter: selections, where
- reduce: aggregations, groupby

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Learning Objectives

-Map: Transform each item

lnput: A function and a sequence

-Output: A sequence of the same length. The items may be
different.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Higher Order Functions:
map

map(function, sequence)

list(map(function_to_apply, list_of_inputs))

Transform each of items by a function.
e.g. square()
Inputs (Domain):
* Function
e Sequence
Output (Range):
* A sequence

Simplified Implementation
def map(function, sequence):

return [function(item) for ditem in sequence]
list(map(square, range(10)))

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

>>> add 3 = lambda x: X + 3

>>> list (map(add 3, [1,2,3,41))
(4, 5>, 6, 7]

>>> list (map(lambda x: x+3, [1,2,3,4]))
(4, 5, o, 7]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Lists & Higher Order Functions:
Filter

Learning Objectives

Learn three new common Higher Order Functions:

-map, filter, reduce
-These each apply a function to a sequence (list) of data
-map/filter are "lazy" so we may need to call list ()

-Filter: Keeps items matching a condition.
- Input: A function and sequence

-Output: A sequence, possibly with items removed. The items don't
change.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

filter(function, sequence)

list(filter(function, list_of_inputs))

Keeps™ each of item where the function is
true.
Inputs (Domain):
* Function
e Sequence
Output (Range):
* A sequence
Simplified implementation

def filter(function, sequence):
return [item for item in sequence if function(item)]

filter(is_even, range(10))

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lambda with HOF's

« A function that returns (makes) a function

def less than 5(c):
return ¢ < 5

>>> less than 5
<function less than 5.. at 0x1019d8c80>

>>> filter (less than 5, [0,1,2,3,4,5,6,7])
(0, 1, 2, 3, 4]

>>> filter (lambda x: x < 3, [0,1,2,3,4,5,6,7])
[0, 1, 2]

Computational Structures in Data Science

Lists & Higher Order Functions
Reduce

Learning Objectives

Learn three new common Higher Order Functions:

-map, filter, reduce
-These each apply a function to a sequence (list) of data

‘Reduce: “Combines” items together, probably doesn't return a list.

Input: A 2 item function and a sequence
‘A single value

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

reduce(function, list_of_1inputs)

Successively combine items of our sequence

« function: add(), takes 2 inputs gives us 1 value.
Inputs (Domain):

« Function, with 2 inputs

« Sequence
Output (Range):

* An item, the type is the output of our function.

Note: We must import reduce from functoo'ls!

Simplified implementation
def reduce(function, sequence):
result = function(sequencel[0], sequencell])
for dindex in range(2, len(sequence)):
result = function(result, sequencel[index])

return result
Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Reduce is an aggregation!

- Reduce aggregates or combines data

- This is commonly called "group by"
- In Data 8:

- Sum over a range of values

- joining multiple cells into 1 array

- calling max(), min() etc. on a column
- We'll revisit aggregations in SQL

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Lists & Higher Order Functions
Acronym

Today’s Task: Acronym

Input: "The University of California at Berkeley"

Output: "UucCB"

def acronym(sentence):
""IMYOUR CODE HERE™"™™

P.S. Pedantry alert: This is really an initialism but that's rather
annoying to say and type. © (However, the code we write is the
same, the difference is in how you pronounce the result.) The more
you know!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Today’s Task: Acronym

Input: "The University of California at Berkeley"

Output: "UucCB"
def acronym(sentence):
"t (Some doctests)

words = sentence.split()

return reduce(add, map(first_letter, filter(long_word,
words)))

P.S. Pedantry alert: This is really an initialism but that's rather
annoying to say and type. © (However, the code we write is the
same, the difference is in how you pronounce the result.) The more
you know!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Acronym With HOF's

What is we want to control the filtering method?

def keep_words(word):
specials = ['Los']

return word in specials or long_word(word)

def acronym_hof(sentence, filter_fn):
words = sentence.split()

return reduce(add, map(first_letter,
filter(filter_fn, words)))

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Three super important HOFS

* For the builtin filter/map, you need to then call list on it to get a list.
If we define our own, we do not need to call list

list(map(function_to_apply, list_of_inputs))
Applies function to each element of the list

list(filter(condition, list_of_inputs))

Returns a list of elements for which the
condition is true

reduce(function, list_of_1inputs)
Applies the function, combining items of the
list into a "single" value.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functional Sequence Operations

«Goal: Transform a list, and return a new result
-We'll use 3 functions that are hallmarks of functional programming

-Each of these takes in a function and a sequence

map

filter

reduce

Transform every
item

Return a list with
fewer items

"Combine" items
together

1 (each item) Anything", a new

item
1 (each item) A Boolean
2 (current item, and Type should
i match the type
the previous result) _
each item

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

List: same length,
but possibly new
values

List: possibly fewer
items, values are
the same

A"single" item

