
Computational Structures in Data Science

Lists & Higher Order Functions

Reminders

Reminders:
https://go.c88c.org/qa5/ - Use during lecture!
https://go.c88c.org/5 - self check (after lecture)

https://go.c88c.org/qa5/
https://go.c88c.org/qa5/
https://go.c88c.org/5

Computational Structures in Data Science

List Comprehensions

Learning Objectives

•List comprehensions let us build lists "inline".
•List comprehensions are an expression that returns a list.
•We can easily “filter” the list using a conditional expression, i.e. if

4

Data-driven iteration: List Comprehensions

•describe an expression to perform on each item in a sequence
•let the data dictate the control
•In some ways, nothing more than a concise for loop.
•Always returns a list!

[<expr with loop var> for <loop var> in <sequence expr >]

[<expr with loop var> for <loop var> in <sequence expr >
if <conditional expression with loop var>]

List Comprehensions vs for Loops

•List comprehensions always return a list!
•For loops do not return anything.

my_data = []
for item in range(10):
 my_data.append(item)
my_data

or
my_data = [item for item in range(10)]

6

Why use list comprehensions?

• Transforming elements in a list
• Filtering a list
• Combining the two!

This is a surprising number of tasks!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo!

8

Computational Structures in Data Science

Higher Order Functions

Learning Objectives

•Learn how to use and create higher order functions:
•Functions can be used as data
•Functions can accept a function as an argument
•Functions can return a new function

10

Code is a Form of Data

•Numbers, Strings: All kinds of data
•Code is its own kind of data, too!
•Why?
•More expressive programs, a new kind of abstraction.
•”Encapsulate” logic and data into neat packages.
•This will be one of the trickier concepts in CS88.

11

What is a Higher Order Function?

•A function that takes in another function as an argument

OR

•A function that returns a function as a result.

12

Brief Aside: import

•Python organizes code in modules

•These functions come with Python, but you need to "import" them.
•import module_name

• gives us access to module_name and module_name.x
•import module_name as my_module

• can access my_module and my_module.x (same code, just a
different name)

•from module_name import x, y, z

• can only access the functions we import. x is my_module.x
from math import pi, sqrt
from operator import mul

An Interesting Example

Why Higher Order Functions?

• We can sum 1 to N easily enough.
•We can sum 1 to N^2 easily enough too.
• Or we can sum, 1 to N^3…
• But why write so many functions?

Why not write one function(!) which allows us flexibility in solving
many problems?

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

A Generic Sum Function

def summation(n, term):
 """Sum the first N terms of a sequence.
 >>> summation(5, cube)
 225
 >>> summation(5, identity)
 15
 >>> summation(10, identity)
 55
 """
 total = 0
 for i in range(n + 1):
 total = total + term(i)
 return total

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Lambda Expressions

Learning Objectives

•Lambda are anonymous functions, which are expressions
•Don’t use return, lambdas always return the value of the
expression.
•They are typically short and concise
•They don’t have an “intrinsic” name when using an environment
diagram.
• Their name is the character 𝜆

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Why Use lambda?

• Utility in simple functions! No "state", no need to "def"ine something
• Using functions gives us flexibility
• "Inline" functions are faster/easier to write, and sometimes require
less reading.
• They're not "reusable", but that's OK!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

lambda

Function expression
“anonymous” function creation

Expression, not a statement, no return or any other statement

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

lambda <arg or arg_tuple> : <expression using args>

add_one = lambda v : v + 1 def add_one(v):
 return v + 1

Examples

>>> add_3 = lambda x: x + 3

>>> add_3(1)

4

>>> list(map(lambda x: x + 3, [1,2,3,4]))

[4, 5, 6, 7]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

More Python HOFs

• sorted – sorts a list of data
• min
• max
All three take in an optional argument called key which allows us to control how
the function performs its action. They are more similar to filter than map.

max([1,2,3,4,5], key = lambda x: -x)

key is the name of the argument and a lambda is its value.

fruits = ["pear", "grape", "KIWI", "APPLE", "melon",
"ORANGE", "BANANA"]
sorted(key=lambda x: x.lower())

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

More Python HOFs

• sorted – sorts a list of data
• min
• max

All three take in an optional argument called key which allows us to control how
the function performs its action. They are more similar to filter than map.

max([1,2,3,4,5], key = lambda x: -x)
min([1,2,3,4,5], key = lambda x: -x)

key is the name of the argument and a lambda is its value.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

HOFs That Operate on Sequences

Learning Objectives

•Learn three new common Higher Order Functions:
•map, filter, reduce
•These each apply a function to a sequence (list) of data
•They are "lazy" so we may need to call list()

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functional List Operations

•Goal: Transform a list, and return a new result
•We'll use 3 functions that are hallmarks of functional programming
•Each of these takes in a function and a sequence

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Function Action Input arguments Input Fn. Returns Output

map Transform every
item 1 (each item) "Anything", a new

item

List: same length,
but possibly new
values

filter Return a list with
fewer items 1 (each item) A Boolean

List: possibly fewer
items, values are
the same

reduce "Combine" items
together

2 (current item, and
the previous result)

Type should
match the type
each item

A "single" item

Why Learn HOFs this way?

•Break a complex task into many smaller parts
• Small problems are easier to solve
• They're easier to understand and debug

•Directly maps to transforming data in lists and tables
• map: transformations, apply
• filter: selections, where
• reduce: aggregations, groupby

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Learning Objectives

•Map: Transform each item
•Input: A function and a sequence
•Output: A sequence of the same length. The items may be
different.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Higher Order Functions:
map

list(map(function_to_apply, list_of_inputs))

Transform each of items by a function.
 e.g. square()
Inputs (Domain):
 • Function
 • Sequence
Output (Range):
 • A sequence
Simplified Implementation
def map(function, sequence):
 return [function(item) for item in sequence]

list(map(square, range(10)))

map(function, sequence)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Examples

>>> add_3 = lambda x: x + 3

>>> list(map(add_3, [1,2,3,4]))

[4, 5, 6, 7]

>>> list(map(lambda x: x+3, [1,2,3,4]))

[4, 5, 6, 7]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Lists & Higher Order Functions:
Filter

Learning Objectives

•Learn three new common Higher Order Functions:
•map, filter, reduce
•These each apply a function to a sequence (list) of data
•map/filter are "lazy" so we may need to call list()

•Filter: Keeps items matching a condition.
• Input: A function and sequence
•Output: A sequence, possibly with items removed. The items don't
change.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

FILTER

list(filter(function, list_of_inputs))

Keeps each of item where the function is
true.
Inputs (Domain):
 • Function
 • Sequence
Output (Range):
 • A sequence

Simplified implementation
def filter(function, sequence):
 return [item for item in sequence if function(item)]

filter(is_even, range(10))

filter(function, sequence)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

• A function that returns (makes) a function

def less_than_5(c):
 return c < 5

>>> less_than_5
<function less_than_5… at 0x1019d8c80>

>>> filter(less_than_5, [0,1,2,3,4,5,6,7])
[0, 1, 2, 3, 4]

>>> filter(lambda x: x < 3, [0,1,2,3,4,5,6,7])
[0, 1, 2]

Lambda with HOFs

Computational Structures in Data Science

Lists & Higher Order Functions
Reduce

Learning Objectives

•Learn three new common Higher Order Functions:
•map, filter, reduce
•These each apply a function to a sequence (list) of data

•Reduce: “Combines” items together, probably doesn’t return a list.
•Input: A 2 item function and a sequence
•A single value

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

REDUCE

Successively combine items of our sequence
 • function: add(), takes 2 inputs gives us 1 value.
Inputs (Domain):
 • Function, with 2 inputs
 • Sequence
Output (Range):
 • An item, the type is the output of our function.

Note: We must import reduce from functools!
Simplified implementation
def reduce(function, sequence):
 result = function(sequence[0], sequence[1])
 for index in range(2, len(sequence)):
 result = function(result, sequence[index])
 return result

reduce(function, list_of_inputs)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Reduce is an aggregation!

• Reduce aggregates or combines data
• This is commonly called "group by"
• In Data 8:
• sum over a range of values
• joining multiple cells into 1 array
• calling max(), min() etc. on a column
• We'll revisit aggregations in SQL

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Lists & Higher Order Functions
Acronym

Today’s Task: Acronym

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Input: "The University of California at Berkeley"

Output: "UCB"

def acronym(sentence):
 """YOUR CODE HERE"""

P.S. Pedantry alert: This is really an initialism but that's rather
annoying to say and type. J (However, the code we write is the
same, the difference is in how you pronounce the result.) The more
you know!

Today’s Task: Acronym

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Input: "The University of California at Berkeley"

Output: "UCB"
def acronym(sentence):
 """ (Some doctests)
 """
 words = sentence.split()
 return reduce(add, map(first_letter, filter(long_word,
words)))

P.S. Pedantry alert: This is really an initialism but that's rather
annoying to say and type. J (However, the code we write is the
same, the difference is in how you pronounce the result.) The more
you know!

Acronym With HOFs

What is we want to control the filtering method?

def keep_words(word):
 specials = ['Los']
 return word in specials or long_word(word)

def acronym_hof(sentence, filter_fn):
 words = sentence.split()
 return reduce(add, map(first_letter,
filter(filter_fn, words)))

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

list(map(function_to_apply, list_of_inputs))

list(filter(condition, list_of_inputs))

Applies function to each element of the list

Returns a list of elements for which the
condition is true

reduce(function, list_of_inputs)
Applies the function, combining items of the
list into a "single" value.

* For the builtin filter/map, you need to then call list on it to get a list.
If we define our own, we do not need to call list

Three super important HOFS

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functional Sequence Operations

•Goal: Transform a list, and return a new result
•We'll use 3 functions that are hallmarks of functional programming
•Each of these takes in a function and a sequence

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Function Action Input arguments Input Fn. Returns Output

map Transform every
item 1 (each item) "Anything", a new

item

List: same length,
but possibly new
values

filter Return a list with
fewer items 1 (each item) A Boolean

List: possibly fewer
items, values are
the same

reduce "Combine" items
together

2 (current item, and
the previous result)

Type should
match the type
each item

A "single" item

