
Computational Structures in Data Science

Lecture 6
Higher Order Functions

Reminders

Reminders:
https://go.c88c.org/qa6/ - Use during lecture!
https://go.c88c.org/6 - self check (after lecture)

2

https://go.c88c.org/qa5/
https://go.c88c.org/5

Computational Structures in Data Science

Lambda Expressions

Examples

>>> add_3 = lambda x: x + 3

>>> add_3(1)

4

>>> list(map(lambda x: x + 3, [1,2,3,4]))

[4, 5, 6, 7]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

More Python HOFs

• sorted – sorts a list of data
• min
• max
All three take in an optional argument called key which allows us to control how
the function performs its action. They are more similar to filter than map.

max([1,2,3,4,5], key = lambda x: -x)

key is the name of the argument and a lambda is its value.

fruits = ["pear", "grape", "KIWI", "APPLE", "melon",
"ORANGE", "BANANA"]
sorted(key=lambda x: x.lower())

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

More Python HOFs

• sorted – sorts a list of data
• min
• max

All three take in an optional argument called key which allows us to control how
the function performs its action. They are more similar to filter than map.

max([1,2,3,4,5], key = lambda x: -x)
min([1,2,3,4,5], key = lambda x: -x)

key is the name of the argument and a lambda is its value.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Optional - Sorting Data

•It is often useful to sort data.
•What property should we sort on?
• Numbers: We can clearly sort.
•What about the length of a word?
•Alphabetically?
•What about sorting a complex data set, but 1 attribute?
• Image I have a list of courses: I could sort be course name, number of units,
start time, etc.

•Python provides 1 function which allows us to provide a lambda to
control its behavior

Optional - Sorting with Lambdas

>>> sorted([1,2,3,4,5], key = lambda x: x)
 [1, 2, 3, 4, 5]
>>> sorted([1,2,3,4,5], key = lambda x: -x)
 [5, 4, 3, 2, 1]
Nonsensical pairing of numbers and words…
>>> sorted([(2, "hi"), (1, "how"), (5, "goes"), (7, "it")],
 key = lambda x:x[0])
[(1, 'how'), (2, 'hi'), (5, 'goes'), (7, 'it')]
>>> sorted([(2, "hi"), (1, "how"), (5, "goes"), (7, "it")],
 key = lambda x:x[1])
 [(5, 'goes'), (2, 'hi'), (1, 'how'), (7, 'it')]
>>> sorted([(2,"hi"),(1,"how"),(5,"goes"),(7,"it")],
 key = lambda x: len(x[1]))
[(2, 'hi'), (7, 'it'), (1, 'how'), (5, 'goes')]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

HOFs That Operate on Sequences

Learning Objectives

•Learn three new common Higher Order Functions:
•map, filter, reduce
•These each apply a function to a sequence (list) of data
•They are "lazy" so we may need to call list()

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functional List Operations

•Goal: Transform a list, and return a new result
•We'll use 3 functions that are hallmarks of functional programming
•Each of these takes in a function and a sequence

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Function Action Input arguments Input Fn. Returns Output

map Transform every
item 1 (each item) "Anything", a new

item

List: same length,
but possibly new
values

filter Return a list with
fewer items 1 (each item) A Boolean

List: possibly fewer
items, values are
the same

reduce "Combine" items
together

2 (current item, and
the previous result)

Type should
match the type
each item

A "single" item

Why Learn HOFs this way?

•Break a complex task into many smaller parts
• Small problems are easier to solve
• They're easier to understand and debug

•Directly maps to transforming data in lists and tables
• map: transformations, apply
• filter: selections, where
• reduce: aggregations, groupby

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Learning Objectives

•Map: Transform each item
•Input: A function and a sequence
•Output: A sequence of the same length. The items may be
different.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Higher Order Functions:
map

list(map(function_to_apply, list_of_inputs))

Transform each of items by a function.
 e.g. square()
Inputs (Domain):
 • Function
 • Sequence
Output (Range):
 • A sequence
Simplified Implementation
def map(function, sequence):
 return [function(item) for item in sequence]

list(map(square, range(10)))

map(function, sequence)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Examples

>>> add_3 = lambda x: x + 3

>>> list(map(add_3, [1,2,3,4]))

[4, 5, 6, 7]

>>> list(map(lambda x: x+3, [1,2,3,4]))

[4, 5, 6, 7]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Lists & Higher Order Functions:
Filter

Learning Objectives

•Learn three new common Higher Order Functions:
•map, filter, reduce
•These each apply a function to a sequence (list) of data
•map/filter are "lazy" so we may need to call list()

•Filter: Keeps items matching a condition.
• Input: A function and sequence
•Output: A sequence, possibly with items removed. The items don't
change.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

FILTER

list(filter(function, list_of_inputs))

Keeps each of item where the function is true.
Inputs (Domain):
 • Function
 • Sequence
Output (Range):
 • A sequence

Simplified implementation
def filter(function, sequence):
 return [item for item in sequence if function(item)]

filter(is_even, range(10))

filter(function, sequence)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

• A function that returns (makes) a function

def less_than_5(c):
 return c < 5

>>> less_than_5
<function less_than_5… at 0x1019d8c80>

>>> filter(less_than_5, [0,1,2,3,4,5,6,7])
[0, 1, 2, 3, 4]

>>> filter(lambda x: x < 3, [0,1,2,3,4,5,6,7])
[0, 1, 2]

Lambda with HOFs

Computational Structures in Data Science

Lists & Higher Order Functions
Reduce

Learning Objectives

•Learn three new common Higher Order Functions:
•map, filter, reduce
•These each apply a function to a sequence (list) of data

•Reduce: “Combines” items together, probably doesn’t return a list.
•Input: A 2 item function and a sequence
•A single value

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

REDUCE

Successively combine items of our sequence
 • function: add(), takes 2 inputs gives us 1 value.
Inputs (Domain):
 • Function, with 2 inputs
 • Sequence
Output (Range):
 • An item, the type is the output of our function.

Note: We must import reduce from functools!
Simplified implementation
def reduce(function, sequence):
 result = function(sequence[0], sequence[1])
 for index in range(2, len(sequence)):
 result = function(result, sequence[index])
 return result

reduce(function, list_of_inputs)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Reduce is an aggregation!

• Reduce aggregates or combines data
• This is commonly called "group by"
• In Data 8:
• sum over a range of values
• joining multiple cells into 1 array
• calling max(), min() etc. on a column
• We'll revisit aggregations in SQL

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Lists & Higher Order Functions
Acronym

Today’s Task: Acronym

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Input: "The University of California at Berkeley"

Output: "UCB"

def acronym(sentence):
 """YOUR CODE HERE"""

P.S. Pedantry alert: This is really an initialism but that's rather
annoying to say and type. J (However, the code we write is the
same, the difference is in how you pronounce the result.) The more
you know!

Today’s Task: Acronym

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Input: "The University of California at Berkeley"

Output: "UCB"
def acronym(sentence):
 """ (Some doctests)
 """
 words = sentence.split()
 return reduce(add, map(first_letter, filter(long_word,
words)))

P.S. Pedantry alert: This is really an initialism but that's rather
annoying to say and type. J (However, the code we write is the
same, the difference is in how you pronounce the result.) The more
you know!

Acronym With HOFs

What is we want to control the filtering method?

def keep_words(word):
 specials = ['Los']
 return word in specials or long_word(word)

def acronym_hof(sentence, filter_fn):
 words = sentence.split()
 return reduce(add, map(first_letter,
filter(filter_fn, words)))

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

list(map(function_to_apply, list_of_inputs))

list(filter(condition, list_of_inputs))

Applies function to each element of the list

Returns a list of elements for which the
condition is true

reduce(function, list_of_inputs)
Applies the function, combining items of the
list into a "single" value.

* For the builtin filter/map, you need to then call list on it to get a list.
If we define our own, we do not need to call list

Three super important HOFS

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functional Sequence Operations

•Goal: Transform a list, and return a new result
•We'll use 3 functions that are hallmarks of functional programming
•Each of these takes in a function and a sequence

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Function Action Input arguments Input Fn. Returns Output

map Transform every
item 1 (each item) "Anything", a new

item

List: same length,
but possibly new
values

filter Return a list with
fewer items 1 (each item) A Boolean

List: possibly fewer
items, values are
the same

reduce "Combine" items
together

2 (current item, and
the previous result)

Type should
match the type
each item

A "single" item

Computational Structures in Data Science

Higher Order Functions

Learning Objectives

•Learn how to use and create higher order functions:
•Functions can be used as data
•Functions can accept a function as an argument
•Functions can return a new function

33

Review: What is a Higher Order Function?

•A function that takes in another function as an argument

OR

•A function that returns a function as a result.

• A function that returns (makes) a function

def leq_maker(c):
 def leq(val):
 return val <= c
 return leq

>>> leq_maker(3)
<function leq_maker.<locals>.leq at 0x1019d8c80>

>>> leq_maker(3)(4)
False

>>> [x for x in range(7) if leq_maker(3)(x)]
[0, 1, 2, 3]

Higher Order Functions

Demo

36

Computational Structures in Data Science

Environments & Higher Order
Functions

Learning Objectives

•Learn how to use and create higher order functions:
•Functions can be used as data
•Functions can accept a function as an argument
•Functions can return a new function

38

Example: compose

•Python Tutor:
http://pythontutor.com/composingprograms.html#code=
def%20square%28x%29%3A%0A%20%20%20%20return%20x%20*
%20x%0A%20%20%20%20%0As%20%3D%20square%0Ax%20%3D%20
s%283%29%0A%0Adef%20make_adder%28n%29%3A%0A%20%20%2
0%20def%20adder%28k%29%3A%0A%20%20%20%20%20%20%20%2

http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html

Environment Diagrams

•Organizational tools that help you understand code
•Terminology:

•Frame: keeps track of variable-to-value bindings, each function call
has a frame
•Global Frame: global for short, the starting frame of all python
programs, doesn’t correspond to a specific function
•Parent Frame: The frame of where a function is defined (default
parent frame is global)
•Frame number: What we use to keep track of frames, f1, f2, f3, etc
•Variable vs Value: x = 1. x is the variable, 1 is the value

Environment Diagrams Steps

1. Draw the global frame
2. When evaluating assignments (lines with single equal), always evaluate right

side first
3. When you call a function MAKE A NEW FRAME!
4. When assigning a primitive expression (number, boolean, string) write the

value in the box
5. When assigning anything else, draw an arrow to the value
6. When calling a function, name the frame with the intrinsic name – the name

of the function that variable points to
7. The parent frame of a function is the frame in which it was defined in

(default parent frame is global)
8. If the value isn’t in the current frame, search in the parent frame

Environment Diagram Tips / Links

• NEVER EVER draw an arrow from one variable to another.
•Useful Resources:
•http://markmiyashita.com/cs61a/environment_diagrams/rules_of_e
nvironment_diagrams/
•http://albertwu.org/cs61a/notes/environments.html

