Computational Structures in Data Science

Lecture 6
Higher Order Functions

Reminders

Reminders:

https://go.c88c.org/qab/ - Use during lecture!

nttps://go.c88c.org/6 - self check (after lecture)

https://go.c88c.org/qa5/
https://go.c88c.org/5

Computational Structures in Data Science

Lambda Expressions

>>> add 3 = lambda x: x + 3
>>> add 3 (1)
4

>>> list (map(lambda x: x + 3, [1,2,3,41))
(4, 5, o6, 7]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

More Python HOF's

« sorted - sorts a list of data
« MinN
¢ Max

All three take in an optional argument called key which allows us to control how
the function performs its action. They are more similar to filter than map.

max([1,2,3,4,5], key = lambda x: -x)
key is the name of the argument and a lambda is its value.

fruits = ["pear", "grape", "KIWI", "APPLE", "melon",
"ORANGE", "BANANA"]

sorted(key=1lambda x: x.lower())

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

More Python HOF's

« sorted - sorts a list of data
« MinN

* MaX

All three take in an optional argument called key which allows us to control how
the function performs its action. They are more similar to filter than map.

max([1,2,3,4,5], key
min([1,2,3,4,5], key

lambda x: -x)

lambda x: -x)

key is the name of the argument and a lambda is its value.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Optional - Sorting Data

|t is often useful to sort data.

-What property should we sort on?
- Numbers: We can clearly sort.
-What about the length of a word?
‘Alphabetically?

-What about sorting a complex data set, but 1 attribute?

- Image | have a list of courses: | could sort be course name, number of units,
start time, etc.

-Python provides 1 function which allows us to provide a lambda to
control its behavior

Optional - Sorting with Lambdas

>>> sorted([1,2,3,4,5], key
[1, 2, 3, 4, 5]

>>> sorted([1,2,3,4,5], key
[5, 4, 3, 2, 1]

lambda x: x)

lambda x: -x)

Nonsensical pairing of numbers and words..
>>> sorted([(2, "hi"), (1, "how"), (5, "goes"), (7, "it")],
key = lambda x:x[0])

[(1, '"how'), (2, 'hi'), (5, 'goes'), (7, 'it')]

>>> sorted([(2, "hi"), (1, "how"), (5, "goes"), (7, "it")],
key = lambda x:x[1])

[(5, 'goes'), (2, 'hi'), (1, 'how'), (7, 'it')]

>>> sorted([(2,"hi"),(1,"how"), (5,"goes"),(7,"it")],
key = lambda x: len(x[1]))

[(2, 'hi'), (7, '"it'), (1, 'how'), (5, 'goes')]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

HOFs That Operate on Sequences

Learning Objectives

Learn three new common Higher Order Functions:

-map, filter, reduce
-These each apply a function to a sequence (list) of data
-They are "lazy" so we may need to call list ()

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functional List Operations

«Goal: Transform a list, and return a new result
-We'll use 3 functions that are hallmarks of functional programming

-Each of these takes in a function and a sequence

map

filter

reduce

Transform every
item

Return a list with
fewer items

"Combine" items
together

1 (each item) Anything", a new

item
1 (each item) A Boolean
2 (current item, and Type should
i match the type
the previous result) _
each item

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

List: same length,
but possibly new
values

List: possibly fewer
items, values are
the same

A"single" item

Why Learn HOF's this way?

-Break a complex task into many smaller parts
- Small problems are easier to solve

- They're easier to understand and debug
-Directly maps to transforming data in lists and tables
- map: transformations, apply
- filter: selections, where
- reduce: aggregations, groupby

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Learning Objectives

-Map: Transform each item

lnput: A function and a sequence

-Output: A sequence of the same length. The items may be
different.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Higher Order Functions:
map

map(function, sequence)

list(map(function_to_apply, list_of_inputs))

Transform each of items by a function.
e.g. square()
Inputs (Domain):
* Function
e Sequence
Output (Range):
* A sequence

Simplified Implementation
def map(function, sequence):

return [function(item) for ditem in sequence]
list(map(square, range(10)))

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

>>> add 3 = lambda x: X + 3

>>> list (map(add 3, [1,2,3,41))
(4, 5>, 6, 7]

>>> list (map(lambda x: x+3, [1,2,3,4]))
(4, 5, o, 7]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Lists & Higher Order Functions:
Filter

Learning Objectives

Learn three new common Higher Order Functions:

-map, filter, reduce
-These each apply a function to a sequence (list) of data
-map/filter are "lazy" so we may need to call list ()

-Filter: Keeps items matching a condition.
- Input: A function and sequence

-Output: A sequence, possibly with items removed. The items don't
change.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

filter(function, sequence)

list(filter(function, list_of_1inputs))

*Keeps™ each of item where the function is true.
Inputs (Domain):

* Function

« Sequence
Output (Range):

* A sequence

Simplified implementation
def filter(function, sequence):
return [item for item in sequence if function(item)]

filter(is_even, range(10))

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lambda with HOF's

« A function that returns (makes) a function

def less than 5(c):
return ¢ < 5

>>> less than 5
<function less than 5.. at 0x1019d8c80>

>>> filter (less than 5, [0,1,2,3,4,5,6,7])
(0, 1, 2, 3, 4]

>>> filter (lambda x: x < 3, [0,1,2,3,4,5,6,7])
[0, 1, 2]

Computational Structures in Data Science

Lists & Higher Order Functions
Reduce

Learning Objectives

Learn three new common Higher Order Functions:

-map, filter, reduce
-These each apply a function to a sequence (list) of data

‘Reduce: “Combines” items together, probably doesn't return a list.

lnput: A 2 item function and a sequence
‘A single value

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

reduce(function, list_of_1inputs)

Successively combine items of our sequence

« function: add(), takes 2 inputs gives us 1 value.
Inputs (Domain):

« Function, with 2 inputs

« Sequence
Output (Range):

* An item, the type is the output of our function.

Note: We must import reduce from functoo'ls!

Simplified implementation
def reduce(function, sequence):
result = function(sequencel[0], sequencell])
for dindex in range(2, len(sequence)):
result = function(result, sequencel[index])

return result
Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Reduce is an aggregation!

- Reduce aggregates or combines data

- This is commonly called "group by"
- In Data 8:

- Sum over a range of values

- joining multiple cells into 1 array

- calling max(), min() etc. on a column
- We'll revisit aggregations in SQL

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Lists & Higher Order Functions
Acronym

Today’s Task: Acronym

Input: "The University of California at Berkeley"

Output: "UucCB"

def acronym(sentence):
""IMYOUR CODE HERE™"™™

P.S. Pedantry alert: This is really an initialism but that's rather
annoying to say and type. © (However, the code we write is the
same, the difference is in how you pronounce the result.) The more
you know!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Today’s Task: Acronym

Input: "The University of California at Berkeley"

Output: "UucCB"
def acronym(sentence):
"t (Some doctests)

words = sentence.split()

return reduce(add, map(first_letter, filter(long_word,
words)))

P.S. Pedantry alert: This is really an initialism but that's rather
annoying to say and type. © (However, the code we write is the
same, the difference is in how you pronounce the result.) The more
you know!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Acronym With HOF's

What is we want to control the filtering method?

def keep_words(word):
specials = ['Los']

return word in specials or long_word(word)

def acronym_hof(sentence, filter_fn):
words = sentence.split()

return reduce(add, map(first_letter,
filter(filter_fn, words)))

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Three super important HOFS

* For the builtin filter/map, you need to then call list on it to get a list.
If we define our own, we do not need to call list

list(map(function_to_apply, list_of_inputs))
Applies function to each element of the list

list(filter(condition, list_of_inputs))

Returns a list of elements for which the
condition is true

reduce(function, list_of_1inputs)
Applies the function, combining items of the
list into a "single" value.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functional Sequence Operations

«Goal: Transform a list, and return a new result
-We'll use 3 functions that are hallmarks of functional programming

-Each of these takes in a function and a sequence

map

filter

reduce

Transform every
item

Return a list with
fewer items

"Combine" items
together

1 (each item) Anything", a new

item
1 (each item) A Boolean
2 (current item, and Type should
i match the type
the previous result) _
each item

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

List: same length,
but possibly new
values

List: possibly fewer
items, values are
the same

A"single" item

Computational Structures in Data Science

Higher Order Functions

Learning Objectives

-Learn how to use and create higher order functions:

«Functions can be used as data
-Functions can accept a function as an argument
-Functions can return a new function

33

Review: What is a Higher Order Function?

-A function that takes in another function as an argument

OR

A function that returns a function as a result.

Higher Order Functions

« A function that returns (makes) a function

def leq maker(c):
def leg(val):
return val <= c
return leqg

>>> leq maker (3)
<function leq maker.<locals>.leq at 0x1019d8c80>

>>> leq maker (3) (4)
False

>>> [x for x in range(7) 1f leq maker (3) (x)]
[0, 1, 2, 3]

36

Computational Structures in Data Science

Environments & Higher Order
Functions

Learning Objectives

-Learn how to use and create higher order functions:

«Functions can be used as data
-Functions can accept a function as an argument
-Functions can return a new function

38

Example: compose

-Python Tutor:

http://pythontutor.com/composingprograms.html#code=
def$20square$28x%$29%3A%0A%20%20%20%20return%20x%20*
$20x%0A%20%20%20%20%0As%20%3D%20squares0Ax%20%3D%20
s%283%29%0A%0Adef%20make adder%28n%29%3A%0A%20%20%2
0%20def%20adder%$28k%$29%3A%0A%20%20%20%20%20%20%20%2

http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html

Environment Diagrams

-Organizational tools that help you understand code

‘Terminology:

-Frame: keeps track of variable-to-value bindings, each function call
has a frame

Global Frame: global for short, the starting frame of all python
programs, doesn't correspond to a specific function

-Parent Frame: The frame of where a function is defined (default
parent frame is global)

-Frame number: What we use to keep track of frames, 1, 2, f3, etc
Variable vs Value: x = 1. x is the variable, 1 is the value

Environment Diagrams Steps

1. Draw the global frame

2. When evaluating assignments (lines with single equal), always evaluate right
side first

When you call a function MAKE A NEW FRAME!

4. When assigning a primitive expression (number, boolean, string) write the
value in the box

5. When assigning anything else, draw an arrow to the value

6. When calling a function, name the frame with the intrinsic name - the name
of the function that variable points to

7. The parent frame of a function is the frame in which it was defined in
(default parent frame is global)

8. If the value isn't in the current frame, search in the parent frame

Environment Diagram Tips [Links

« NEVER EVER draw an arrow from one variable to another.

«Useful Resources:

-http://markmiyashita.com/cs61a/environment_diagrams/rules_of_e
nvironment_diagrams/

‘http://albertwu.org/cs61a/notes/environments.htm

