Computational Structures in Data Science

Recursion

l1erce

Data Sc

111

n
Q
—
-
i)
@)
-
—
i)
N

Computationa

Recursion

Demo: vee [Fractals

python3 -1 10.py
- This uses Turtle Graphics.

- The turtle module is really cool, but net something you need to learn
- vee is the one recursive problem that doesn't have a base case

- But fractals in general are a fun way to visualize self-similar structures
- Use the following keys to play with the demo

- Space to draw

- Cto Clear

- Up to add "vee" to the functions list

- Down to remove the "vee" functions from the list.
- Some cool variations on vee, seen in Snap! (the language of C510)

« More Fractals

https://snap.berkeley.edu/collection?username=nathalierun&collection=Fractals
https://snap.berkeley.edu/collection?username=nathalierun&collection=Fractals
https://snap.berkeley.edu/collection?username=nathalierun&collection=Vee&page_number=2
https://snap.berkeley.edu/collection?username=nathalierun&collection=Fractals
https://snap.berkeley.edu/collection?username=snapcloud&collection=Fractals
https://snap.berkeley.edu/collection?username=snapcloud&collection=Fractals

Draw a ‘vee’ (Simplified)

def vee():
pendown ()
left(15)
forward(50)
choice(draw_functions) () # Call a HOF
backward(45)
right(30) # turn from the left to the right
forward(50)
choice(draw_functions) () # Call a HOF
backward (50)
left(15)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Why Recursion?

- Recursive structures exist (sometimes
hidden) in nature and therefore in datal

- It's mentally and sometimes
computationally more efficient to
process recursive structures using
recursion.

- Sometimes, the recursive definition is
easier to understand or write, even if it
is computationally slower.

- Fractals are definitely easily to think of
recursively!

Today: Recursion

Recursive function calls itself, directly or indirectly

re-cur-sion
/ri'karZHan/ ©

noun MATHEMATICS LINGUISTICS

the repeated application of a recursive procedure or definition.

. arecursive definition.
plural noun: recursions

re-cur-sive
[ri'’karsiv/ €
adjective

characterized by recurrence or repetition, in particular.

+ MATHEMATICS LINGUISTICS
relating to or involving the repeated application of a rule, definition, or procedure to
successive results.

« COMPUTING

relating to or involving a program or routine of which a part requires the application
of the whole, so that its explicit interpretation requires in general many successive
executions.

Recursion In Practice

- We will use a function to solve smaller sub-problems

- Compared to a for-loop, while loop, we will not directly
specify how many times we need to make a function call.

Computational Structures in Data Science

Sum the Numbers

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Iteration vs Recursion: Sum Numbers

While loop:

def sum(n):
s=0
1=0
while 1i<n:
i=1+1
S=S+1
return s

Recall: Iteration

1. Initialize the "base” case of no iterations

def sum(n) . 2. Starting value
s =0 /23_Endingvalue
for 1 in range(O,n+1):
S = s+1
return s

4. New loop variable value

Iteration vs Recursion: Sum Numbers

Recursion:
def sum(n):
if n == 0:
return 0
No Lloops!
return .. 777

Recursion Key concepts - by example

1. Test for simple “base” case 2. Solution in simple “base” case
def sum(n):
if h == 0:
return 0

return n + sum(n-1)

/ A \
3. Assume recursive

solution to simpler problem 4."Combine” the simpler part
of the solution, with the

recursive case

« The sum of no numbers is zero

- The sum of 1 through n is the
- sum of 1 through (n-1)
- plusn

def sum(n):
if n ==
return 0
return n + sum(n-1)

Why does it work

>>> sum(55)
55
>>> sum(3)
6

sum(3) => 3 + sum(2)

3+ 2+ 1+

#
#
#
3 +2 + 1+

>
>

> 3 + 2 + sum(1l)

sum(0)
O == 6

Questions

-In what order do we sum the squares ?
- How does this compare to iterative approach ?

def sum(n):

s =0
for i in range(0,n+1):
S = S+i
return s
def sum(n): def sum(n):
if n == 0: if n == 0:
return 0 return 0

return sum(n-1) + n return n + sum(n-1)

The Recursive Process

Recursive solutions involve two major parts:

= Base case(s), the problem is simple enough to be
solved directly

o Recursive case(s). A recursive case has three
components:

- Divide the problem into one or more simpler or
smaller parts
- Invoke the function (recursively) on each part, and

- Combine the solutions of the parts into a solution for
the problem.

Iteration vs Recursion: Sum Numbers

Recursion:
def sum(n):
if n == 0:
return 0
return n + sum(n-1)

Iteration vs Recursion: Cheating!

Sometimes it's best to just use a formula! But that's not always the point. ©

def sum(n):
return (n x (n + 1)) / 2

18

Computational Structures in Data Science

Countdown

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo: Countdown

def countdown(n):

if n ==
print('Blastoff!')
else:
.. what goes here?

20

Demo: Countdown

def countdown(n):

if n ==
print('Blastoff!')
else:
print(n)
countdown(n - 1)

27

The Recursive Process

Recursive solutions involve two major parts:

= Base case(s), the problem is simple enough to be
solved directly

o Recursive case(s). A recursive case has three
components:

- Divide the problem into one or more simpler or
smaller parts
- Invoke the function (recursively) on each part, and

- Combine the solutions of the parts into a solution for
the problem.

Computational Structures in Data Science

Recursion

Learning Objectives

- Compare Recursion and Iteration to each other

- Translate some simple functions from one method to another
« Write a recursive function
- Understand the base case and a recursive case

24

Palindromes

- Palindromes are the same word forwards and backwards.
- Python has some tricks, but how could we build this?

- palindrome = lambda w: w == w[::-1]

«[::-1] isaslicing shortcut [0:1len(w) :-1] to reverse items.
- Let's write Reverse:

def reverse_while(s):
mmnn

>>> reverse_while('hello')

'olleh'
def reverse(s): i
result = "'
result = "' while s:
first = s[0]
-For 'Letter -in S s = s[1:] # remove the first letter

result = first + result
return result

result = letter + result

return result

Fun Palindromes

-C88C

-racecar

-LOL

-radar

-a man a plan a canal panama
.aibohphobia @

- The fear of palindromes.

-https://czechtheworld.com/best-
palindromes/#palindrome-words

26

https://czechtheworld.com/best-palindromes/
https://czechtheworld.com/best-palindromes/
https://czechtheworld.com/best-palindromes/
https://czechtheworld.com/best-palindromes/
https://czechtheworld.com/best-palindromes/
https://czechtheworld.com/best-palindromes/

Writing Reverse Recursively

def reverse(s):
if not s:

return "'
return 'TODO'

def palindrome(word):

return word == reverse(word)

27

How should reverse work?

-Our algorithm in words:
- Take the first letter, put it at the end
- The beginning of the string is the reverse of the rest.

reverse('ABC')

> reverse('BC') + 'A'

> reverse('C') + 'B'" + 'A
> 'C" + 'B' + A

> 'CBA'

28

reverse recursive

def reverse(s):
if not s:
return '

return Recursive Case

def palindrome(word) :
return word == reverse(word)

29

The Recursive Process

Recursive solutions involve two major parts:

= Base case(s), the problem is simple enough to be
solved directly

o Recursive case(s). A recursive case has three
components:

- Divide the problem into one or more simpler or
smaller parts
- Invoke the function (recursively) on each part, and

- Combine the solutions of the parts into a solution for
the problem.

Review: Functions

def <function name> (<argument list>) :

Lo

return expl’eSSlOﬂ

def concat(strl, str2):
return strl+str2;

concat(“Hello”,”World”)

- Generalizes an expression or set of statements to
apply to lots of instances of the problem

- A function should do one thing well

How does it work?

- Each recursive call gets its own local variables

- Just like any other function call
- Computes its result (possibly using additional calls)
- Just like any other function call
- Returns its result and returns control to its caller
- Just like any other function call
- The function that is called happens to be itself
- Called on a simpler problem
- Eventually stops on the simple base case

Another Example

indexing an element of a

def first(s):
"""Return t st element in a sequence."""
return s[0]

def rest(s):
"""Return all elements in a sequence after the first"""

return s[1:]

Slicing a sequence of elements

def min_r(s):
“PPReturn minimum value in a sequence.”””
if Base Case

else:

Recursive Case

- Recursion over sequence length

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Recall: Iteration

1. Initialize the "base” case of no iterations

def sum_of_sq ES(I’]) . 2. Starting value

accum = 0 23.Endingvalue
for 1 in range(l,n+1):

accum =_accum + ixi
return accum

4. New loop variable value

Recursion Key concepts - by example

1. Test for simple “base” case 2. Solution in simple “base” case

-\ /

def su f_squares(n):
1%m§f< 1:

return 0
else:
return sgm_of_squares(n—l) + Nn*x%x2

/ \

3. Assume recusive solution
to simpler problem 4. "Combine” the simpler part

of the solution, with the
recursive case

« The sum of no numbers is zero

« The sum of 14 through n?is the
- sum of 14 through (n-1%
« plus n?

def sum_of_squares(n):
if n < 1:
return 0
else:
return sum_of_squares(n-1) + nxx2

Why does it work

sum_of_squares(3)

sum_of_squares(3) => sum_of_squares(2) + 3**2

=> sum_of_squares(l) + 2*%*2 + 3%%x2

=> sum_of_squares(0) + 1x*2 + 2%%x2 + 3%%2
=> 0 + 1x*x2 + 2%%2 + 3%%2 = 14

Questions

-In what order do we sum the squares ?

- How does this compare to iterative approach ?

def sum_of_squares(n):

accum = 0

for i in range(l,n+1l):
accum = accum + i*i

return accum

def sum_of_squares(n):
if n < 1:
return 0
else:

return sum_of_squares(n-1) + n*xx*2

def sum_of_squares(n):
if n < 1:
return 0
else:

return nxx2 + sum_of_squares(n-1)

- The recursive “leap of faith” works as long as we hit the base case eventually

- What happens if we don't?

Recursion (unwanted)

Why Recursion?

«"After Abstraction, Recursion is probably the 29 biggest
idea in this course”

«“|t's tremendously useful when the problem is self-
similar”

-"It's no more powerful than iteration, but often leads to
more concise & better code”

«“It's more ‘'mathematical”
- "It embodies the beauty and joy of computing”

Example I

List all items on your hard disk

BE* L?;ra’v’ell.ectl:ll'lSU":il'lg . F”eS
-l \=> scripts .
- E= diji . Folders contain
(= dojo .
-G doiox - Files

E](_l widgets .
B o Folders

- [2] stockInfo.css /\
== images

o 47 gasoline_179x98.png

,,,,, i'r gold_179x98.pnq
L e 4 natural_gas_179x98.png
== templates
; 2] Stockinfa.html
2] stockwidget,html

Why Recursion? More Reasons

« Recursive structures exist (sometimes hidden) in nature and
therefore in datal

- It's mentally and sometimes computationally more efficient
to process recursive structures using recursion.

