
Computational Structures in Data Science

Recursion
M. C. Escher : Drawing Hands

The Recursive Process

Recursive solutions involve two major parts:

 Base case(s), the problem is simple enough to be
solved directly

 Recursive case(s). A recursive case has three
components:

 Divide the problem into one or more simpler or
smaller parts

 Invoke the function (recursively) on each part, and

 Combine the solutions of the parts into a solution for
the problem.

Why learn recursion?

• Recursive data is all around us!

• Take CS61B (data structures), CS70 (discrete math), CS164 (Programming
Languages), Data 101 (Data Eng) for more examples where you'll encounter
recursion

• Trees (post-midterm) and Graphs are structures which are recursive in nature.

•E.g. A social network is a graph of friends with connections to other friends,
with connections to other friends.

•Analyzing "chains" of data, can benefit from recursion

• Next Lecture: Problems that "branch" out:

• generating subsets and permutations

• calculating Fibonacci numbers

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Computational Structures in Data Science

Palindromes

Learning Objectives

•Compare Recursion and Iteration to each other

•Translate some simple functions from one method to another

•Write a recursive function

•Understand the base case and a recursive case

5

Palindromes

•Palindromes are the same word forwards and backwards.

•Python has some tricks, but how could we build this?

• palindrome = lambda w: w == w[::-1]

•[::-1] is a slicing shortcut [0:len(w):-1] to reverse items.

• Let's write Reverse:

def reverse(s):

result = ''

for letter in s:

result = letter + result

return result

def reverse_while(s):
"""
>>> reverse_while('hello')
'olleh'
"""
result = ''
while s:

first = s[0]
s = s[1:] # remove the first letter
result = first + result

return result

Fun Palindromes

•C88C

•racecar

•LOL

•radar

•a man a plan a canal panama

•aibohphobia

• The fear of palindromes.

•https://czechtheworld.com/best-
palindromes/#palindrome-words

7

https://czechtheworld.com/best-palindromes/#palindrome-words
https://czechtheworld.com/best-palindromes/#palindrome-words
https://czechtheworld.com/best-palindromes/#palindrome-words
https://czechtheworld.com/best-palindromes/#palindrome-words
https://czechtheworld.com/best-palindromes/#palindrome-words
https://czechtheworld.com/best-palindromes/#palindrome-words

Writing Reverse Recursively

def reverse(s):

if not s:

return ''

return 'TODO'

def palindrome(word):

return word == reverse(word)

8

How should reverse work?

•Our algorithm in words:

• Take the first letter, put it at the end

• The beginning of the string is the reverse of the rest.

reverse('ABC')

→ reverse('BC') + 'A'

→ reverse('C') + 'B' + 'A

→ 'C' + 'B' + 'A

→ 'CBA'

9

reverse recursive

10

def reverse(s):
if not s:

return ''
return reverse(s[1:]) + s[0]

def palindrome(word):
return word == reverse(word)

Recursive Case

Palindrome – Alternative Approaches

• Compare first / last letters, working our way towards the middle

• Base Case?

• What is the smallest word that is a palindrome?

• A 1-letter word!

• A 0 letter word? Maybe?

• We can have a recursive case:

• If the first and last letter are the same, check the "inner word"

• If they're not → return False

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Computational Structures in Data Science

Recursion With Lists

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Another Example – Finding a Minimum

•Recursion over sequence length

def first(s):
"""Return the first element in a sequence."""
return s[0]

def rest(s):
"""Return all elements in a sequence after the first"""
return s[1:]

def min_r(s):
"""Return minimum value in a sequence."""
if len(s) == 1:

return first(s)
else:

return min(first(s), min_r(rest(s)))

Base Case

Recursive Case

indexing an element of a sequence

Slicing a sequence of elements

Computational Structures in Data Science

Binary Search

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Searching for Items in a Sequence

• Given a sequence of sorted items, how do I find an item's position (index)

• e.g. my_list.index(item)

• How do we build our own?

• What if we know our list is sorted?

• We can have a clever, efficient algorithm:

• Check the middle value → If found, return the middle index

• If item is smaller than the middle value → search only the first half

• If item is bigger than the middle value → search only the second half

•Keep searching each 'half' until there's nothing left to divide.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Binary Search

letters = 'abcdefghijklmnopqrstuvwxyz'

def binary_search(sequence, item):

…

binary_search(letters, 'c') → 2

•How do we split this list in half?

•We can use inner functions to control our starting and stopping of searching

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Inner Functions

• Inner functions allow us to control our base case, without exposing it to the
caller

• What might we want? This is ugly.
def binary_search(sequence, item, start, stop):

•When should we stop searching? When our 'start' is > 'stop', i.e. we've gone past
the end of our sequence

•Enter inner functions!

def binary_search(sequence, item):

def helper(start, stop):

…

return helper(0, len(sequence) - 1)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Binary Search – A Start

def binary_search(sequence, item):

def helper(start, stop):

if start > stop:

return -1

mid = (start + stop) // 2

if sequence[mid] == item:

return mid

elif sequence[mid] > item:

return ________________________

else:

return ________________________

return helper(0, len(sequence) - 1)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Binary Search – A Start

def binary_search(sequence, item):

def helper(start, stop):

if start > stop:

return -1

mid = (start + stop) // 2

if sequence[mid] == item:

return mid

elif sequence[mid] > item:

return helper(start, mid - 1)

else:

return helper(mid + 1, stop)

return helper(0, len(sequence) - 1)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Computational Structures in Data Science

Review: Order of Execution

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i*i
return accum

1. Initialize the “base” case of no iterations

2. Starting value

3. Ending value

4. New loop variable value

Recall: Iteration

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

1. Test for simple “base” case 2. Solution in simple “base” case

3. Assume recusive solution
to simpler problem 4. ”Combine” the simpler part

of the solution, with the
recursive case

Recursion Key concepts – by example

In words

•The sum of no numbers is zero

•The sum of 12 through n2 is the

• sum of 12 through (n-1)2

• plus n2

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

sum_of_squares(3)

sum_of_squares(3) => sum_of_squares(2) + 3**2
=> sum_of_squares(1) + 2**2 + 3**2
=> sum_of_squares(0) + 1**2 + 2**2 + 3**2
=> 0 + 1**2 + 2**2 + 3**2 = 14

Why does it work

Questions

• In what order do we sum the squares ?

•How does this compare to iterative approach ?

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i*i
return accum

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

def sum_of_squares(n):
if n < 1:

return 0
else:

return n**2 + sum_of_squares(n-1)

Trust …

•The recursive “leap of faith” works as long as we hit the base case eventually

•What happens if we don’t?

Recursion (unwanted)

Why Recursion?

• “After Abstraction, Recursion is probably the 2nd biggest
idea in this course”

• “It’s tremendously useful when the problem is self-
similar”

• “It’s no more powerful than iteration, but often leads to
more concise & better code”

• “It’s more ‘mathematical’”

• “It embodies the beauty and joy of computing”

•…

Example I

List all items on your hard disk

• Files

• Folders contain

• Files

• Folders

Recursion!

Why Recursion? More Reasons

• Recursive structures exist (sometimes hidden) in nature and
therefore in data!

• It’s mentally and sometimes computationally more efficient
to process recursive structures using recursion.

	Slide 1: Recursion
	Slide 2: The Recursive Process
	Slide 3: Why learn recursion?
	Slide 4: Palindromes
	Slide 5: Learning Objectives
	Slide 6: Palindromes
	Slide 7: Fun Palindromes
	Slide 8: Writing Reverse Recursively
	Slide 9: How should reverse work?
	Slide 10: reverse recursive
	Slide 11: Palindrome – Alternative Approaches
	Slide 12: Recursion With Lists
	Slide 13: Another Example – Finding a Minimum
	Slide 14: Binary Search
	Slide 15: Searching for Items in a Sequence
	Slide 16: Binary Search
	Slide 17: Inner Functions
	Slide 18: Binary Search – A Start
	Slide 19: Binary Search – A Start
	Slide 20: Review: Order of Execution
	Slide 21: Recall: Iteration
	Slide 22: Recursion Key concepts – by example
	Slide 23: In words
	Slide 24: Why does it work
	Slide 25: Questions
	Slide 26: Trust …
	Slide 27: Recursion (unwanted)
	Slide 28: Why Recursion?
	Slide 29: Example I
	Slide 30: Why Recursion? More Reasons

