omputational Structures in Data Science

Recursion

M. C. Escher : Drawing Hands

©@O®S©



The Recursive Process

Recursive solutions involve two major parts:

= Base case(s), the problem is simple enough to be
solved directly

s Recursive case(s). A recursive case has three
components:

- Divide the problem into one or more simpler or
smaller parts

- Invoke the function (recursively) on each part, and

- Combine the solutions of the parts into a solution for
the problem.



Why learn recursion?

- Recursive data is all around us!
- Take CS561B (data structures), CS70 (discrete math), CS164 (Programming
Languages), Data 101 (Data Eng) for more examples where you'll encounter

recursion
- Trees (post-midterm) and Graphs are structures which are recursive in nature.

- E.g. A social network is a graph of friends with connections to other friends,

with connections to other friends.
- Analyzing "chains" of data, can benefit from recursion

- Next Lecture: Problems that "branch" out:
. generating subsets and permutations
- calculating Fibonacci numbers

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Computational Structures in Data Science

Palindromes

©@O®S©



Learning Objectives

- Compare Recursion and Iteration to each other

- Translate some simple functions from one method to another
- Write a recursive function

- Understand the base case and a recursive case



Palindromes

- Palindromes are the same word forwards and backwards.
- Python has some tricks, but how could we build this?

- palindrome = lambda w: w == w[::-1]

- [::-1] isaslicing shortcut [0: len(w) :-1] to reverse items.
- Let's write Reverse:

def reverse_while(s):

>>> reverse_while('hello')

'olleh'
def reverse(s): it
result = ''
result = "' while s:
first = s[0]
.For. 'Le.tter. -in S s = s[1:] # remove the first letter

result = first + result
return result

result = letter + result

return result



Fun Palindromes

«C88C

‘racecar

-LOL

-radar

-a man a plan a canal panama
.aibohphobia &

- The fear of palindromes.

-Nttps://czechtheworld.com/best-
palindromes/#palindrome-words



https://czechtheworld.com/best-palindromes/#palindrome-words
https://czechtheworld.com/best-palindromes/#palindrome-words
https://czechtheworld.com/best-palindromes/#palindrome-words
https://czechtheworld.com/best-palindromes/#palindrome-words
https://czechtheworld.com/best-palindromes/#palindrome-words
https://czechtheworld.com/best-palindromes/#palindrome-words

Writing Reverse Recursively

def reverse(s):
it not s:
return '
return 'TODO'

def palindrome(word) :

return word == reverse(word)



How should reverse work?

-Our algorithm in words:
- Take the first letter, put it at the end
- The beginning of the string is the reverse of the rest.

reverse('ABC')

> reverse('BC') + 'A'

> reverse('C') + 'B'" + 'A
> 'C' + 'B'" + 'A

> '"CBA'



reverse recursive

def reverse(s):
if not s:
return "'

return Recursive Case

def palindrome(word) :
return word == reverse(word)

10



Palindrome - Alternative Approaches

- Compare first / last letters, working our way towards the middle
- Base Case?

- What is the smallest word that is a palindrome?
« A 1-letter word!
- AQ letter word? Maybe?
- We can have a recursive case:
- |If the first and last letter are the same, check the "inner word"
- If they're not = return False

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Computational Structures in Data Science

Recursion With Lists

Berkeley

@ @ @ © Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Another Example - Finding a Minimum

indexing an element of a sequence

def first(s):
"""Return irst element in a sequence."""
return s[0]

def rest(s):
"""Return all elements in a sequence after the first"""

return s[1:]

Slicing a sequence of elements

def min_r(s):
"""Return minimum value in a sequence."""

if Base Case

else:

Recursive Case

- Recursion over sequence length



Computational Structures in Data Science

Binary Search

Berkeley

@ @ @ © Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Searching for Items in a Sequence

- (Given a sequence of sorted items, how do | find an item's position (index)
- eg my_Llist.index(item)
- How do we build our own?
- What if we know our list is sorted?
- We can have a clever, efficient algorithm:
- Check the middle value = If found, return the middle index
- If item is smaller than the middle value = search only the first half
- If item is bigger than the middle value = search only the second half
- Keep searching each 'half' until there's nothing left to divide.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Binary Search

letters = 'abcdefghijklmnopqgrstuvwxyz'

def binary_search(sequence, item):
binary_search(letters, 'c') =2 2

- How do we split this list in half?
- We can use inner functions to control our starting and stopping of searching

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Inner Functions

- Inner functions allow us to control our base case, without exposing it to the
caller

- What might we want? This is ugly.
def binary_search(sequence, item, start, stop):

- When should we stop searching? When our 'start' is > 'stop’, i.e. we've gone past
the end of our sequence

- Enter inner functions!
def binary_search(sequence, item):

def helper(start, stop):

return helper (0, len(sequence) - 1)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Binary Search - A Start

def binary_search(sequence, 1item):
def helper(start, stop):
if start > stop:
return -1
mid = (start + stop) // 2
if sequence[mid] == 1tem:
return mid
elif sequence[mid] > 1item:
return ____ _ _ __ _ __ ___
else:
return

return helper (0, len(sequence) - 1)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Binary Search - A Start

def binary_search(sequence, 1item):
def helper(start, stop):

if start > stop:

return -1
mid = (start + stop) // 2
if sequence[mid] == 1tem:

return mid
elif sequence[mid] > 1item:

return helper(start, mid - 1)
else:

return helper(mid + 1, stop)

return helper (0, len(sequence) - 1)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Computational Structures in Data Science

Review: Order of Execution

Berkeley

@ @ @ © Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Recall: Iteration

1. Initialize the “base” case of no iterations

def sum_of_squyarés(n): [?>trtngvalue

accum = 0 23.Endingvalue
for 1 in range(l,n+1):

accum =_accum + %1
return accum

4. New loop variable value




Recursion Key concepts - by example

1. Test for simple “base” case 2. Solution in simple “base” case

N\ yad

def suﬁfo_squares(n):
if n < 1:
return 0O
else:
return sgm_of_squares(n—l) + N*xx2

N\ [N

3. Assume recusive solution | _
to simpler problem 4."Combine” the simpler part

of the solution, with the
recursive case




- The sum of no numbers is zero
- The sum of 1% through n?is the
- sum of 14 through (n-1)
» plus n?

def sum_of_squares(n):
if n < 1:
return O
else:
return sum_of_squares(n-1) + nx*x2




Why does it work

sum_of_squares(3)

# sum_of_squares(3) => sum_of_squares(2) + 3%x%x2

# => sum_of_squares(1l) + 2%*2 + 3%%2

# => sum_of_squares(0) + 1%x%x2 + 2%*2 + 3*x%x2
# => 0 + 1*x*%x2 + 2%x%x2 + 3%%2 = 14



Questions

- In what order do we sum the squares ?
- How does this compare to iterative approach ?

def sum_of_squares(n):
accum = 0
for 1 in range(l,n+l):
accum = accum + ixi
return accum

def sum_of_squares(n): def sum_of_squares(n):
if n < 1: if n < 1:
return 0 return 0
else: else:
return sum_of_squares(n-1) + nx*x2 return nx*2 + sum_of_squares(n-1)




- The recursive “leap of faith” works as long as we hit the base case eventually

- What happens if we don't?



Recursion (unwanted)




Why Recursion?

- “After Abstraction, Recursion is probably the 2"d biggest
idea in this course”

-“It's tremendously useful when the problem is self-
similar”

-“It's no more powerful than iteration, but often leads to
more concise & better code”

«“It's more ‘'mathematical”
- "It embodies the beauty and joy of computing”



Example I

List all items on your hard disk

== gravelleconsulting

= = scripts Files
B dit - Folders contain
- = dojo .
BB doiox - Files
= E: widgeks .
=t & o Folders
P e . StockInfo.css
EI E? images /\
L j crude_oil_179x98.png Recursion!

------ g gasoline_17%:38, png

------ g gold_179x93. png
- g natural_gas_179x595.png

EI [E? templates
L e =] StockInfo.html
b stockiidaet, html




Why Recursion? More Reasons

« Recursive structures exist (sometimes hidden) in nature and
therefore in datal!

- |t's mentally and sometimes computationally more efficient
tO process recursive structures using recursion.




	Slide 1: Recursion
	Slide 2: The Recursive Process 
	Slide 3: Why learn recursion?
	Slide 4: Palindromes
	Slide 5: Learning Objectives
	Slide 6: Palindromes
	Slide 7: Fun Palindromes
	Slide 8: Writing Reverse Recursively
	Slide 9: How should reverse work?
	Slide 10: reverse recursive
	Slide 11: Palindrome – Alternative Approaches
	Slide 12: Recursion With Lists
	Slide 13: Another Example – Finding a Minimum
	Slide 14: Binary Search
	Slide 15: Searching for Items in a Sequence
	Slide 16: Binary Search
	Slide 17: Inner Functions
	Slide 18: Binary Search – A Start
	Slide 19: Binary Search – A Start
	Slide 20: Review: Order of Execution
	Slide 21: Recall: Iteration
	Slide 22: Recursion Key concepts – by example
	Slide 23: In words
	Slide 24: Why does it work
	Slide 25: Questions
	Slide 26: Trust …
	Slide 27: Recursion (unwanted)
	Slide 28: Why Recursion?
	Slide 29: Example I
	Slide 30: Why Recursion? More Reasons

