
Computational Structures in Data Science

Midterm Review

Announcements & Policies

•Midterm:

• 2 hours, 120 Minutes

• 5 Handwritten Cheat sheets – More than ~3 is counter-productive

• Must be handwritten!

• 1 CS88 Provided Reference Sheet (See previous exams page)

•Academic Integrity violations: -100% and no clobber policy.

• Everything through this week is in scope!

• functions, loops, sequences, HOFs, dictionaries, ADTs, recursion, tree
recursion

You are not your grades!

Do your best!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

My Advice

•Don't rush!

• Slow is fast and fast is slow

• BREATHE!

•Skim the exam first

• It's ok to do questions out of order!

• Get the stuff you're good without out of the way

• BUT don't spend too much time planning the exam.

•Read through the question once

• What's it asking you to do at a high level?

• What do the doctests suggest?

• What techniques should you be using?

• Use the scratch space!

Midterm Topics

• Functions

• Higher Order Functions

• Functions as arguments

• Functions as return values

• Environment Diagrams

• Lists, Dictionaries

• List Comprehensions, Dictionary Comprehensions

• Abstract Data Types

• Recursion & Tree Recursion

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Computational Structures in Data Science

Recursion Review

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

The Recursive Process

Recursive solutions involve two major parts:

 Base case(s), the problem is simple enough to be
solved directly

 Recursive case(s). A recursive case has three
components:

 Divide the problem into one or more simpler or
smaller parts

 Invoke the function (recursively) on each part, and

 Combine the solutions of the parts into a solution for
the problem.

Advice

• Breaking down the problem:

• What is the base case? What is the smallest or simplest argument?

• How many different 'pathways' are there? Tree recursion means 2 or more
pathways

• Double-check the return types!

• What is being 'combined' (e.g. added, min/max, etc). The return value must be
compatible.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Count Change Revisited, 61A FA22 Final Q5

• CS61A Fall 2022 Final Exam [61A Exams Page]

• Preview: Adapt Count Change, then figure out how handle additional
constraints.
coins = (1, 5, 10, 25, 50)

def count_change(amount):

def helper(remaining, coin_index):

if coin_index == len(coins) or remaining < 0:

return 0

if remaining == 0:

return 1

return (helper(remaining - coins[coin_index], coin_index) +

helper(remaining , coin_index + 1))

return helper(amount, 0)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

https://cs61a.org/exam/fa22/final/61a-fa22-final.pdf
https://cs61a.org/resources/

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Select The Correct Option – View Page 13

•5.1: Fill in Blank (a)

• True • False • n > 0 • k > 0 • n > k • n == k • n > 10 • n
== 10

•5.2: Fill in Blank (b)

• k • k - 1 • k + 1 • n • n + 1 • n - 1 • 0 • 10

•5.3: Fill in Blank (c)

• k • k - 1 • k + 1 • n • n + 1 • n - 1 • 0 • 10

•5.4: What does count_change_register(25, 2) return?

• 0 • 1 • 2 • 3 • 4 • None of these

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Select The Correct Option – View Page 13

•5.1: Fill in Blank (a)

• True • False • n > 0 • k > 0 • n > k • n == k • n > 10 • n
== 10

•5.2: Fill in Blank (b)

• k • k - 1 • k + 1 • n • n + 1 • n - 1 • 0 • 10

•5.3: Fill in Blank (c)

• k • k - 1 • k + 1 • n • n + 1 • n - 1 • 0 • 10

•5.4: What does count_change_register(25, 2) return?

• 0 • 1 • 2 • 3 • 4 • None of these

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

Computational Structures in Data Science

Some Practice Questions

Exam Practice

View exams https://c88c.org/fa25/resources/

•Spring 22 Q7 — Closet Overhead

•Spring 20 Q5 — Atey Ate Already

https://c88c.org/fa25/resources/

SP22

SP20

def findRestaurant(restaurants, order):

"""

Hint: Use totalCost In the case that two restaurants have the same price,

keep the first restaurant.

>>> findRestaurant(['chipotle', 'la burrita'], ['burrito', 'taco'])

[['la burrita', 9.78], [['chipotle', 11.96], ['la burrita', 9.78]]]

>>> findRestaurant(['sliver', 'cheeseboard'], ['boba'])

[['None found!', -1.0], [['sliver', -1.0], ['cheeseboard', -1.0]]]

"""

placesList = [[restaurant, __________________]

for restaurant in restaurants]

minCost = -1.0

cheapestPlace = "None found!"

for place in __________________:

…

… Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

def findRestaurant(restaurants, order):

placesList = [[restaurant, totalCost(restaurant, order)]

for restaurant in restaurants]

minCost = -1.0

cheapestPlace = "None found!"

for place in placesList:

if place[1] != -1.0 and (place[1] < minCost or
minCost == -1.0):

minCost = place[1]

cheapestPlace = place[0]

return [cheapestPlace, minCost] + placesList

Michael Ball | UC Berkeley | https://c88c.org | © CC BY -NC -SA

SP20 #5

	Slide 1: Midterm Review
	Slide 2: Announcements & Policies
	Slide 3
	Slide 4: My Advice
	Slide 5: Midterm Topics
	Slide 6: Recursion Review
	Slide 7: The Recursive Process
	Slide 8: Advice
	Slide 9: Count Change Revisited, 61A FA22 Final Q5
	Slide 10
	Slide 11: Select The Correct Option – View Page 13
	Slide 12: Select The Correct Option – View Page 13
	Slide 13: Some Practice Questions
	Slide 14: Exam Practice
	Slide 15: SP22
	Slide 19: SP20
	Slide 20
	Slide 21
	Slide 23
	Slide 24: SP20 #5
	Slide 25

