Computational Structures in Data Science

Midterm Review

Berkeley

©@O®S©

Announcements & Policies

« Midterm:
« 2 hours, 120 Minutes

- 5 Handwritten Cheat sheets - More than ~3 is counter-productive
- Must be handwritten!

- 1 CS88 Provided Reference Sheet (See previous exams page)
- Academic Integrity violations: -100% and no clobber policy.
- Everything through this week is in scope!

- functions, loops, sequences, HOFs, dictionaries, ADTs, recursion, tree
recursion

You are not your grades!
Do your best!

eley | https://c88c.org | © CC BY-NC-SA

My Advice

-Don't rush!

- Slow is fast and fast is slow

- BREATHE!
- Skim the exam first

- It's ok to do guestions out of order!

- GGet the stuff you're good without out of the way

- BUT don't spend too much time planning the exam.
- Read through the question once

- What's it asking you to do at a high level?

- What do the doctests suggest?

- What techniques should you be using?
- Use the scratch space!

Midterm Topics

« FuNctions

Higher Order Functions
- Functions as arguments
- Functions as return values

Environment Diagrams

Lists, Dictionaries

List Comprehensions, Dictionary Comprehensions

Abstract Data Types
Recursion & Tree Recursion

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Recursion Review

Berkeley

@ @ @ © Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

The Recursive Process

Recursive solutions involve two major parts:

= Base case(s), the problem is simple enough to be
solved directly

s Recursive case(s). A recursive case has three
components:

- Divide the problem into one or more simpler or
smaller parts

- Invoke the function (recursively) on each part, and

- Combine the solutions of the parts into a solution for
the problem.

- Breaking down the problem:
- What is the base case? What is the smallest or simplest argument?

- How many different 'pathways' are there? Tree recursion means 2 or more
pathways

- Double-check the return types!

- What is being 'combined' (e.g. added, min/max, etc). The return value must be
compatible.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Count Change Revisited, 61A FA22 Final Q5

- CS61A Fall 2022 Final Exam [61A Exams Page]

- Preview: Adapt Count Change, then figure out how handle additional
constraints.

coins = (1, 5, 10, 25, 50)

def count_change(amount):

def helper(remaining, coin_index):
if coin_index == len(coins) or remaining < 0:
return 0

if remaining ==

return 1
return (helper(remaining - coins[coin_1index], coin_index) +
helper(remaining , coin_index + 1))

return helper(amount, 0)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://cs61a.org/exam/fa22/final/61a-fa22-final.pdf
https://cs61a.org/resources/

Modify this code to solve the following new problem:

Your cash register only has k of each type of coin. Implement count_change_register, which counts the
number of ways to make change for amount using at most k coins of each type.

def count_change_register(amount, k):
"' 'Return the number of ways to make change for amount using at most k of each coin type.

>>> count_change_register(20, 10) # Excludes 20 pennies and excludes 1 nickel + 15 pennies
7

>>> count_change_register(20, 2) # 10-10, 10-5-5

2

>>> count_change_register (100, 10)

84

>>> count_change_register (100, 100)

292

def helper(remaining, coin_index, n):

if coin_index == len(coins) or remaining < 0 or __(a)__:
return 0O
if remaining ==
return 1
return (helper(remaining - coins[coin_index], coin_index , __(M)__) +
helper (remaining , coin_index + 1, __(c)__))

return helper (amount, 0, 0)
Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Select The Correct Option - View Page 13

«5.1: Fill in Blank (a)

e True o False e N > 0 ¢ k >0 e n >k en==ken> 10 e n
- = l@

«5.2: Fill in Blank (b)

e k e k-1 e k +1 enen+1en-19e0 ¢ 10
«5.3: Fill in Blank (c)

e k e k-1 e k +1 enen+1en-19e0 ¢ 10
5.4: What does count_change_register (25, 2) return?

e O ¢ 1 ¢ 2 ¢ 3 ¢ 4 o None of these

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Select The Correct Option - View Page 13

«5.1: Fill in Blank (a)

e True o False e n > 0 ¢ k >0 e n >k en ==Kk en > 10 e n
== 10

«5.2: Fill in Blank (b)

e k e k=1 e k +1 enen+1en-19e0 ¢ 10
«5.3: Fill in Blank (c)

e K e k-1 e k+1 enen+1en-12e0 ¢ 10
5.4: What does count_change_register (25, 2) return?

e O ¢ 1 ¢« 2 ¢ 3 ¢ 4 o None of these

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Some Practice Questions

Berkeley

©@O®S©

Exam Practice

View exams https://c88c.org/fa2b/resources/

-Spring 22 Q7 — Closet Overhead
-Spring 20 Q5 — Atey Ate Already

https://c88c.org/fa25/resources/

7. (5.0 points) Closet Overhaul
SPZZ You've designed a closet abstract data type to help you organize your wardrobe.

A closet contains two things:
e owner: the name of the closet owner represented as a string

e clothes: the collection of clothes in the closet represented as a dictionary, where the key is the clothing
item name and the value is the number of times the clothing item has been worn.

The make_closet constructor takes in owner (a string) and clothes (a list of strings representing clothing
items) and returns a closet ADT.

Given this, you've implemented the abstract data type as follows:

def make_closet (owner, clothes):
""" Create and returns a new closet. """
clothes_dict = {}
for item in clothes:
clothes_dict[item] = O
return (owner, clothes_dict)

def get_owner(closet):
"nm Returns the owner of the closet """
return closet[0]

def get_clothes(closet):
""" Returns a dictionary of the clothes in the closet """
return closet[1]

Given the closet ADT, implement the functions wear_clothes and favorite_clothing_item. You may not
need all the lines provided, and you may need to change the indentation for some lines.

5. (10 points) Atey Ate Already

It’s a lot more fun to think about food than take midterms, so let’s look at the cheapest places to fulfill an
order. Given the function total_cost and assuming it works as described, fill out find restaurant to find the
cheapest restaurant to fulfill the order.

Remember: Pay close attention to the doctests to guide your solution.

def total_cost(restaurant, order):

Function that returns the total cost of an order at a certain
restaurant. Returns -1 if fulfilling the request is not possible.

>>> total_cost(’chipotle’, [’burrito’, ’taco’])
11.96

>>> total_cost(’sliver’, [’boba’])

-1.0

We have omitted how this function works.

def find_restaurant(restaurants, order):
"o
Function that returns the cheapest restaurant and price as the first
element of a list followed by the prices for each of the restaurants.
In the case that no restaurant can fulfill the order, the first
element should be [’None found!’, -1]. In the case that two
restaurants have the same price, keep the first restaurant.
Hint: Use total_cost!
>>> find_restaurant ([’chipotle’, ’la burrita’], [’burrito’, ’taco’])
[[’1la burrita’, 9.78], [[’chipotle’, 11.96], [’la burrita’,9.78]]

>>> find_restaurant ([’sliver’,’cheeseboard’], [’boba’])
[[None found!, -1.0], [’sliver’, -1.0]J[’cheeseboard’, -1.0]]

def findRestaurant(restaurants, order):

Hint: Use totalCost In the case that two restaurants have the same price,

keep the first restaurant.

>>> findRestaurant(['chipotle', 'la burrita'], ['burrito', 'taco'])

[['la burrita', 9.78], [['chipotle', 11.96], ['la burrita', 9.78]1]

>>> findRestaurant(['sliver', 'cheeseboard'], ['boba'])

[['None found!', -1.0], [['sliver', -1.0], ['cheeseboard',6 -1.0]]]

nun

placeslList = [[restaurant,
for restaurant in restaurants]

minCost = -1.0

cheapestPlace = "None found!"

for place 1in

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

def findRestaurant(restaurants, order):
placeslList = [[restaurant, totalCost(restaurant, order)]
for restaurant in restaurants]
minCost = -1.0
cheapestPlace = "None found!"
for place in placesList:

1f place[l] != -1.0 and (place[l] < minCost or
minCost == -1.0):

minCost = place[1l]
cheapestPlace = place[0]

return [cheapestPlace, minCost] + placesList

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

(10 points) Atey Ate Already

It’s a lot more fun to think about food than take midterms, so let’s look at the cheapest places to fulfill an
order. Given the function total_cost and assuming it works as described, fill out find restaurant to find the
cheapest restaurant to fulfill the order.

Remember: Pay close attention to the doctests to guide your solution.

def total_cost(restaurant, order):
mmnn
Function that returns the total cost of an order at a certain
restaurant. Returns -1 if fulfilling the request is not possible.
>>> total_cost(’chipotle’, [’burrito’, ’taco’])
11.96
>>> total_cost(’sliver’, [’boba’])
-1.0
mmnn
We have omitted how this function works.
def find_restaurant (restaurants, order):
nnn
Function that returns the cheapest restaurant and price as the first
element of a list followed by the prices for each of the restaurants.
In the case that no restaurant can fulfill the order, the first
element should be [’None found!’, -1]. In the case that two
restaurants have the same price, keep the first restaurant.
Hint: Use total_cost!
>>> find_restaurant ([’chipotle’, ’la burrita’], [’burrito’, ’taco’])
[[’la burrita’, 9.78], [[’chipotle’, 11.96], [’la burrita’,9.78]]

>>> find_restaurant([’sliver’,’cheeseboard’], [’boba’])
[[None found!, -1.0], [’sliver’, -1.0][’cheeseboard’, -1.0]]

nnn

def findRestaurant (restaurants, order):
nmnn

Function that returns the cheapest restaurant and price as the first
element of a list followed by the prices for each of the restaurants.

In the case that no restaurant can fulfill the order, the first

element should be [’None found!’, -1].

Hint: Use totalCost! In the case that two restaurants have the same price,
keep the first restaurant.

>>> findRestaurant ([’chipotle’, ’la burrita’], [’burrito’, ’taco’])

[[’la burrita’, 9.78], [[’chipotle’, 11.96], [’la burrita’,9.78]]

>>> findRestaurant ([’sliver’,’cheeseboard’], [’boba’])

[[None found!, -1.0], [’sliver’, -1.0]J[’cheeseboard’, -1.0]]
nnn
placesList = [[restaurant, totalCost(restaurant, order)]
for restaurant in restaurants]

minCost = -1.0
cheapestPlace = "None found!"
for place in range(placesList):

if place[1] != -1.0 and (place[l] < minCost or minCost == -1.0):

minCost = place[1]
cheapestPlace = place [0]
return [cheapestPlace, minCost] + placesList

	Slide 1: Midterm Review
	Slide 2: Announcements & Policies
	Slide 3
	Slide 4: My Advice
	Slide 5: Midterm Topics
	Slide 6: Recursion Review
	Slide 7: The Recursive Process
	Slide 8: Advice
	Slide 9: Count Change Revisited, 61A FA22 Final Q5
	Slide 10
	Slide 11: Select The Correct Option – View Page 13
	Slide 12: Select The Correct Option – View Page 13
	Slide 13: Some Practice Questions
	Slide 14: Exam Practice
	Slide 15: SP22
	Slide 19: SP20
	Slide 20
	Slide 21
	Slide 23
	Slide 24: SP20 #5
	Slide 25

