Computational Structures in Data Science

Efficiency & Run Time Analysis

UC Berkeley

Introductions

Isabelle Ng - Head TA Senior studying CS, DS, Music

Dhruv Syngol- Admin/Lead TA Junior studying DS, Econ

Learning Objectives

- Runtime Analysis:
 - How long will my program take to run?
 - Why can't we just use a clock?
 - How can we simplify understanding computation in an algorithm
- Enjoy this stuff? Take Data Structures!
- Find it challenging? Don't worry! It's a different way of thinking

Efficiency is all about trade-offs

- Running Code: Takes Time, Requires Memory
 - More efficient code takes less time or uses less memory
- *Every* computation requires both time and "space" on our computer
- Writing efficient code is not obvious
 - Sometimes it is even convoluted!
- But!
- We need a framework before we can optimize code

Is this code fast?

- Most code doesn't really need to be fast! Computers, even your phones are already amazingly fast!
- Sometimes...it does matter!
 - Lots of data
 - Small hardware
 - Complex processes
- Slow code takes up battery power

Beware!

"Premature Optimization is the root of all evil"

- Donald Knuth, Stanford CS Professor

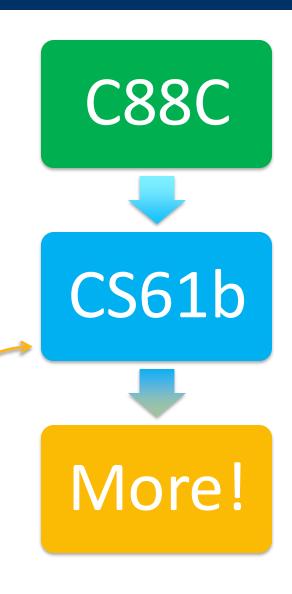
There is **no use** in fast code if it is wrong!

Runtime analysis problem & solution

- Time w/stopwatch, but...
 - Different computers may have different runtimes.
 - Same computer may have different runtime on the same input. \boxtimes
 - Need to implement the algorithm first to run it. ⊗
- *Solution*: Count the number of "steps" involved, not time!
 - Each operation = 1 step
 - 1 + 2 is one step
 - lst[5] is one step
- When we say "runtime", we'll mean # of steps, not (clock) time!

Runtime: input size & efficiency

- Definition:
 - **Input size**: the # of things in the input.
 - e.g. length of a list, the number of iterations in a loop.
 - Running time as a function of input size
 - Measures efficiency
- Important!
 - In C88C <u>we won't care</u> about the efficiency of your solutions!
 - Efficiency matters in the next courses

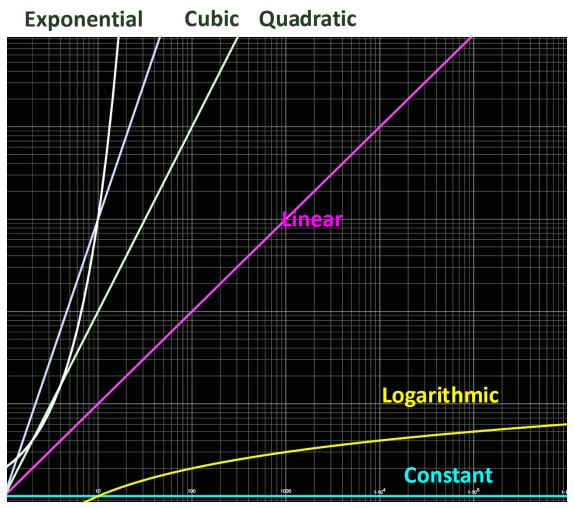


Runtime analysis: worst or average case?

- Could use avg case:
 - Average running time over a vast # of inputs
- Instead: use worst case
 - Consider running time as input grows
- Why?
 - Nice to know most time we'd <u>ever</u> spend
 - Worst case happens often
 - The "average" can be similar to the worst
- Often called "Big O" for "order"
 - O(1), O(n) ...

Runtime analysis: Final abstraction

- Instead of an exact number of operations we'll use abstraction
 - Want order of growth, or dominant term
- In C88Cx we'll consider
 - Constant 0(1)
 - Logarithmic 0(log n)
 - Linear O(n)
 - Quadratic O(n²)
 - Exponential $O(2^n)$
- e.g. $10n^2 + 4\log(n) + n$
 - ...is quadratic



Graph of order of growth curves on log-log plot

Computational Structures in Data Science

Practicing Analyzing Efficiency

UC Berkeley

Example: Finding a student (by ID)

- Input
 - <u>Unsorted</u> list of students L
 - Find student S
- Output
 - True if S is in L, else False
- Pseudocode Algorithm
 - Go through one by one, checking for match.
 - If match, true
 - If exhausted L and didn't find S, false

Worst-case running time as function of the size of L?

- 1. Constant
- 2. Logarithmic
- 3. Linear
- 4. Quadratic
- 5. Exponential

Computational Patterns

- If the number of steps to solve a problem is always the same \rightarrow Constant time: O(1)
 - e.g. getting a result does not depend on the size of the input
 - lst[n] is one step no matter how many items are in the list.
- If the number of steps increases similarly for each larger input \rightarrow
- **Linear Time: O(n)**
 - Most commonly: for each item
- If the number of steps increases by some a factor of the input \rightarrow Quadradic Time: O(n²)
 - Most commonly: Nested for Loops

Computational Patterns

Two harder cases:

- Logarithmic Time: O(log n)
 - We can double our input with only one more level of work
 - Dividing data in "half" (or thirds, etc)
- Exponential Time: O(2ⁿ)
 - For each bigger input we have 2x the amount of work!
 - Certain forms of Tree Recursion

Example: Finding a student (by ID)

- Input
 - Sorted list of students L
 - Find student S
- Output : same
- Pseudocode Algorithm
 - Start in middle
 - If match, report true
 - If exhausted, throw away half of L and check again in the middle of remaining part of L
 - If nobody left, report false

Worst-case running time as function of the size of L?

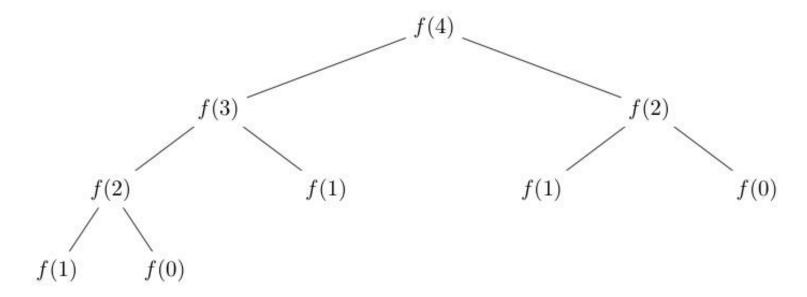
- 1. Constant
- 2. Logarithmic
- 3. Linear
- 4. Quadratic
- 5. Exponential

Comparing Fibonacci

```
def iter_fib(n):
    x, y = 0, 1
    for _ in range(n):
       x, y = y, x+y
    return x
def fib(n): # Recursive
    if n < 2:
       return n
    return fib(n - 1) + fib(n - 2)
```

Tree Recursion

- Fib(4) \rightarrow 9 Calls
- Fib(5) \rightarrow 16 Calls
- Fib(6) \rightarrow 26 Calls
- Fib(7) \rightarrow 43 Calls
- Fib(20) \rightarrow ???



Why?

- Notice there was all this duplication in the tree?
- What is the exact order of growth?
 - It's exponential.
 - phi to the N (ϕ ⁿ), where phi is the golden ratio.

N	Operations
1	1
2	3
3	5
4	9
7	41
8	67
20	21891

Computational Structures in Data Science

Improving Efficiency

UC Berkeley

Learning Objectives

- Learn how to cache the results to save time.
- "memoization" is a specific version to avoid repeated calculations

Example

- Use a dictionary to cache results.
- This is called memoization

```
fib_results = {}
def memo_fib(n): # Look up values in our dictionary.
    global fib_results
    if n in fib_results:
        print(f'found {n} -> {fib_results[n]}')
        return fib_results[n]
    if n < 2:
        fib_results[n] = n
        return n
    result = memo_fib(n - 1) + memo_fib(n - 2)
    fib results[n] = result
    return result
```

A Better Approach

- Python's functools module has a `cache` function
- Uses a technique called decorators that we don't cover.
 - Decorators are really just a "shortcut" for higher order functions.
 - e.g. cache_fib = cache(fib) is a similar approach to the function below, but less commonly used.

```
from functools import cache
```

```
@cache
def cache_fib(n): # Recursive
   if n < 2:
      return n
   return cache_fib(n - 1) + cache_fib(n - 2)</pre>
```

What next?

- Understanding *algorithmic complexity* helps us know whether something is possible to solve.
- Gives us a formal reason for understanding why a program might be slow
- This is only the beginning:
 - We've only talked about time complexity, but there is *space* complexity.
 - In other words: How much memory does my program require?
 - Often you can trade time for space and vice-versa
 - Tools like "caching" and "memorization" do this.

Computational Structures in Data Science

Thank you!

See you next week ©

UC Berkeley

