DATA C88C Recursion
FaH 2025 Discussion D: Septem]oer 297 2025

Recursion

Recursion is when a function calls itself to solve a smaller version of the same problem. Instead of tackling a complex

task all at once, recursion breaks it down into simpler steps until it reaches a base case.

Many students find this topic challenging. Everything gets easier with practice. Please help each other learn.

Q1: Swipe

Implement swipe, which prints the digits of argument n, one per line, first backward then forward. The left-most

digit is printed only once. Do not use while or for or str. (Use recursion, of course!)

def swipe(n):
"""Print the digits of n, one per line, first backward then forward.
>>> swipe(2837)
7
3
8
2
8
3
7
if n < 10:
print(n)
else:
"s*x*x YOUR CODE HERE xxx"

First print the first line of the output, then make a recursive call, then print the last line of the output.

2 Recursion

Q2: Skip Factorial

Define the base case for the skip_factorial function, which returns the product of every other positive integer,

starting with n.

def skip_factorial(n):
"""Return the product of positive integers n * (n - 2) * (n - 4) *

>>> skip_factorial(5) # 5 *x 3 * 1

15

>>> gkip_factorial(8) # 8 * 6 * 4 * 2
384

if ___
return ___
else:

return ___

If n is even, then the base case will be 2. If n is odd, then the base case will be 1. Try to write a condition that
handles both possibilities.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Recursion 3

Q3: Recursive Hailstone

Recall the hailstone function from Homework 2. First, pick a positive integer n as the start. If n is even, divide
it by 2. If n is odd, multiply it by 3 and add 1. Repeat this process until n is 1. Complete this recursive version of

hailstone that prints out the values of the sequence and returns the number of steps.

def hailstone(n):
"""Print out the hailstone sequence starting at n,
and return the number of elements in the sequence.
>>> a = hailstone(10)
10
5
16
8
4
2
1
>>> a
7
>>> b = hailstone(1)
1
>>> b
1
print(n)
if n % 2 == 0:
return even(n)
else:

return odd(n)

def even(n):
return ____
def odd(n):
"x*xx YOUR CODE HERE *x*x*"

An even number is never a base case, so even always makes a recursive call to hailstone and returns one more than

the length of the rest of the hailstone sequence.

An odd number might be 1 (the base case) or greater than one (the recursive case). Only the recursive case should

call hailstone.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Recursion

Extra Questions

The questions below are optional but recommended if you would like some extra practice.

Q4: Is Prime

Implement is_prime that takes an integer n greater than 1. It returns True if n is a prime number and False

otherwise. Try following the approach below, but implement it recursively without using a while (or for) statement.

You will need to define another “helper” function (a function that exists just to help implement this one). Does it

matter whether you define it within is_prime or as a separate function in the global frame? Try to define it to take

as few arguments as possible.

def is_prime(n):
"""Returns True if n is a prime number and False otherwise.
>>> is_prime(2)
True
>>> is_prime(16)
False
>>> is_prime(521)
True

nnn

"xxx YOUR CODE HERE *x*x"

Define an inner function that checks whether some integer between i and n evenly divides n. Then you can call it

starting with i=2:

def is_prime(n):
def f(i):
if 1 ==
return ____
elif

return

else:
return f(____)
return f(2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Recursion 5

Q5: Function Repeater

Define a function make_fn_repeater which takes in a one-argument function £ and an integer x. It should return
another function which takes in one argument, another integer. This function returns the result of applying f to x
this number of times.

Make sure to use recursion in your solution.

def make_func_repeater(f, x):

nnn

>>> increment_repeater = make_func_repeater(lambda x: x + 1, 1)
>>> increment_repeater(2) #same as f(f(x))

3

>>> increment_repeater(5)

6

nnn

def repeat(____):
if

return

else:

return

return

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Recursion
	Q1: Swipe
	Q2: Skip Factorial
	Q3: Recursive Hailstone

	Extra Questions
	Q4: Is Prime
	Q5: Function Repeater

