
DATA C88C Recursion
Fall 2025 Discussion 5: September 29, 2025

Recursion
Recursion is when a function calls itself to solve a smaller version of the same problem. Instead of tackling a complex
task all at once, recursion breaks it down into simpler steps until it reaches a base case.

Many students find this topic challenging. Everything gets easier with practice. Please help each other learn.

Q1: Swipe

Implement swipe, which prints the digits of argument n, one per line, first backward then forward. The left-most
digit is printed only once. Do not use while or for or str. (Use recursion, of course!)

def swipe(n):
"""Print the digits of n, one per line, first backward then forward.

>>> swipe(2837)
7
3
8
2
8
3
7
"""
if n < 10:

print(n)
else:

"*** YOUR CODE HERE ***"

First print the first line of the output, then make a recursive call, then print the last line of the output.

2 Recursion

Q2: Skip Factorial

Define the base case for the skip_factorial function, which returns the product of every other positive integer,
starting with n.

def skip_factorial(n):
"""Return the product of positive integers n * (n - 2) * (n - 4) * ...

>>> skip_factorial(5) # 5 * 3 * 1
15
>>> skip_factorial(8) # 8 * 6 * 4 * 2
384
"""
if ___:

return ___
else:

return ___

If n is even, then the base case will be 2. If n is odd, then the base case will be 1. Try to write a condition that
handles both possibilities.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Recursion 3

Q3: Recursive Hailstone

Recall the hailstone function from Homework 2. First, pick a positive integer n as the start. If n is even, divide
it by 2. If n is odd, multiply it by 3 and add 1. Repeat this process until n is 1. Complete this recursive version of
hailstone that prints out the values of the sequence and returns the number of steps.

def hailstone(n):
"""Print out the hailstone sequence starting at n,
and return the number of elements in the sequence.
>>> a = hailstone(10)
10
5
16
8
4
2
1
>>> a
7
>>> b = hailstone(1)
1
>>> b
1
"""
print(n)
if n % 2 == 0:

return even(n)
else:

return odd(n)

def even(n):
return ____

def odd(n):
"*** YOUR CODE HERE ***"

An even number is never a base case, so even always makes a recursive call to hailstone and returns one more than
the length of the rest of the hailstone sequence.

An odd number might be 1 (the base case) or greater than one (the recursive case). Only the recursive case should
call hailstone.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Recursion

Extra Questions
The questions below are optional but recommended if you would like some extra practice.

Q4: Is Prime

Implement is_prime that takes an integer n greater than 1. It returns True if n is a prime number and False
otherwise. Try following the approach below, but implement it recursively without using a while (or for) statement.

You will need to define another “helper” function (a function that exists just to help implement this one). Does it
matter whether you define it within is_prime or as a separate function in the global frame? Try to define it to take
as few arguments as possible.

def is_prime(n):
"""Returns True if n is a prime number and False otherwise.
>>> is_prime(2)
True
>>> is_prime(16)
False
>>> is_prime(521)
True
"""
"*** YOUR CODE HERE ***"

Define an inner function that checks whether some integer between i and n evenly divides n. Then you can call it
starting with i=2:

def is_prime(n):
def f(i):

if i == n:
return ____

elif ____:
return ____

else:
return f(____)

return f(2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Recursion 5

Q5: Function Repeater

Define a function make_fn_repeater which takes in a one-argument function f and an integer x. It should return
another function which takes in one argument, another integer. This function returns the result of applying f to x
this number of times.

Make sure to use recursion in your solution.

def make_func_repeater(f, x):
"""
>>> increment_repeater = make_func_repeater(lambda x: x + 1, 1)
>>> increment_repeater(2) #same as f(f(x))
3
>>> increment_repeater(5)
6
"""
def repeat(____):

if ____:
return ____

else:
return ____

return ____

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Recursion
	Q1: Swipe
	Q2: Skip Factorial
	Q3: Recursive Hailstone

	Extra Questions
	Q4: Is Prime
	Q5: Function Repeater

