
DATA C88C Tree Recursion
Fall 2025 Discussion 6: October 6, 2025

Tree Recursion
For the following questions, don’t start trying to write code right away. Instead, start by describing the recursive
case in words. Some examples: - In fib from lecture, the recursive case is to add together the previous two Fibonacci
numbers. - In double_eights from homework, the recursive case is to check for double eights in the rest of the
number. - In count_partitions from lecture, the recursive case is to partition n-m using parts up to size m and to
partition n using parts up to size m-1.

Q1: Maximum Subsequence

A subsequence of a number is a series of digits from the number (not necessarily contiguous). For example, 12345
has subsequences like 123, 234, 124, 245, etc. Your task is to find the largest subsequence that is under a specified
length.

Hint: To add a digit (d) to an existing number (n), calculate: n * 10 + d. For instance, to add 8 to 15
to get 158, compute 15 * 10 + 8.

2 Tree Recursion

def max_subseq(n, t):
"""
Return the maximum subsequence of length at most t that can be found in the given
number n.
For example, for n = 2012 and t = 2, we have that the subsequences are

2
0
1
2
20
21
22
01
02
12

and of these, the maximum number is 22, so our answer is 22.

>>> max_subseq(2012, 2)
22
>>> max_subseq(20125, 3)
225
>>> max_subseq(20125, 5)
20125
>>> max_subseq(20125, 6) # note that 20125 == 020125
20125
>>> max_subseq(12345, 3)
345
>>> max_subseq(12345, 0) # 0 is of length 0
0
>>> max_subseq(12345, 1)
5
"""
"*** YOUR CODE HERE ***"

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Tree Recursion 3

Q2: Making Onions

Write a function make_onion that takes in two one-argument functions, f and g. It returns a function that takes in
three arguments: x, y, and limit. The returned function returns True if it is possible to reach y from x using up to
limit calls to f and g, and False otherwise.

For example, if f adds 1 and g doubles, then it is possible to reach 25 from 5 in four calls: f(g(g(f(5)))).

def make_onion(f, g):
"""Return a function can_reach(x, y, limit) that returns
whether some call expression containing only f, g, and x with
up to limit calls will give the result y.

>>> up = lambda x: x + 1
>>> double = lambda y: y * 2
>>> can_reach = make_onion(up, double)
>>> can_reach(5, 25, 4) # 25 = up(double(double(up(5))))
True
>>> can_reach(5, 25, 3) # Not possible
False
>>> can_reach(1, 1, 0) # 1 = 1
True
>>> add_ing = lambda x: x + "ing"
>>> add_end = lambda y: y + "end"
>>> can_reach_string = make_onion(add_ing, add_end)
>>> can_reach_string("cry", "crying", 1) # "crying" = add_ing("cry")
True
>>> can_reach_string("un", "unending", 3) # "unending" = add_ing(add_end("un"))
True
>>> can_reach_string("peach", "folding", 4) # Not possible
False
"""
def can_reach(x, y, limit):

if limit < 0:
return ____

elif x == y:
return ____

else:
return can_reach(____, ____, limit - 1) or can_reach(____, ____, limit - 1)

return can_reach

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Tree Recursion

Q3: Pascal’s Triangle

Pascal’s triangle is a recursively defined mathematical structure. Here are the first five rows of Pascal’s triangle:

Pascal’s triangle, as a grid.

Every number in Pascal’s triangle is defined as the sum of the number above it and the number above and to the
left of it. Rows and columns are zero-indexed; that is, the first row is row 0 instead of row 1 and the first column is
column 0 instead of column 1. For example, the number at row 2, column 1 in Pascal’s triangle is 2.

Define the function pascal, which takes a row and column and finds the value of the number at that position in
Pascal’s triangle. Note that row and column will always be nonnegative.

Hint: For which positions can we find the corresponding number in Pascal’s triangle without recursion?
Remember that positions are zero-indexed!

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Tree Recursion 5

def pascal(row, column):
"""Returns the value of the item in Pascal's Triangle
whose position is specified by row and column.
>>> pascal(0, 0) # The top left (the point of the triangle)
1
>>> pascal(0, 5) # Empty entry; outside of Pascal's Triangle
0
>>> pascal(3, 2) # Row 3 (1 3 3 1), Column 2
3
>>> pascal(4, 2) # Row 4 (1 4 6 4 1), Column 2
6
"""
"*** YOUR CODE HERE ***"

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Tree Recursion
	Q1: Maximum Subsequence
	Q2: Making Onions
	Q3: Pascal’s Triangle

