
DATA C88C Control, Python Lists
Fall 2025 Discussion 2: September 8, 2025

While and If
Learning to use if and while is an essential skill. During this discussion, focus on what we’ve studied in the
first three lectures: - if: runs code only when a condition is true - while: repeats code as long as a condition is
true - assignment (=): stores a value in a variable - comparison (<, >, ==, …): checks relationships between values -
arithmetic: +, -, *, /

Please don’t use features of Python that we haven’t discussed in class yet, such as for, range, and lists. We’ll have
plenty of time for those later in the course, but now is the time to practice the use of if (textbook section 1.5.4) and
while (textbook section 1.5.5).

Q1: Fizzbuzz

Implement the classic Fizz Buzz sequence. The fizzbuzz function takes a positive integer n and prints out a single
line for each integer from 1 to n. For each i:

• If i is divisible by both 3 and 5, print fizzbuzz.
• If i is divisible by 3 (but not 5), print fizz.
• If i is divisible by 5 (but not 3), print buzz.
• Otherwise, print the number i.

Try to make your implementation of fizzbuzz concise.

https://www.composingprograms.com/pages/15-control.html#conditional-statements
https://www.composingprograms.com/pages/15-control.html#conditional-statements
https://en.wikipedia.org/wiki/Fizz_buzz

2 Control, Python Lists

def fizzbuzz(n):
"""
>>> result = fizzbuzz(16)
1
2
fizz
4
buzz
fizz
7
8
fizz
buzz
11
fizz
13
14
fizzbuzz
16
>>> print(result)
None
"""
i = 1
while i <= n:

if i % 3 == 0 and i % 5 == 0:
print('fizzbuzz')

elif i % 3 == 0:
print('fizz')

elif i % 5 == 0:
print('buzz')

else:
print(i)

i += 1

Video walkthrough

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://youtu.be/-Y2JdHG1aK8

Control, Python Lists 3

Problem Solving
A useful approach to implementing a function is to work step by step— for example, we’ll walk through the is_prime
problem to see how this looks in practice: 1. Pick an example input and corresponding output. Pick n is 9
as the input and False as the output. 2. Describe a process in English that computes the output from
the input. Here’s a process: Check that 9 (n) is not a multiple of any integers between 1 and 9 (n). 3. Figure
out what additional variables you’ll need. Introduce i to represent each number between 1 and 9 (n). 4.
Implement the process in code. Implement is_prime. 5. Test that the implementation works on your
original example. Check that is_prime(9) will return False by thinking through the execution of the code. 6.
Test that the implementation really works on other examples. (If not, you might need to revise step
2.) Check that is_prime(3) will return True and is_prime(1) will return False.

Important: It’s highly recommended that you don’t check your work using a computer right away. - Instead, talk
to people around you and reason it out. - On exams, you won’t have access to Python, so practice thinking through
examples. - Drawing an environment diagram can help!

This approach doesn’t go straight from reading a question to writing code. Try it out on the next two problems. If
you’re not sure about how something works or get stuck, ask for help from the course staff.

Q2: Is Prime?

Write a function that returns True if a positive integer n is a prime number and False otherwise.

A prime number n is a number that is not divisible by any numbers other than 1 and n itself. For example, 13 is
prime, since it is only divisible by 1 and 13, but 14 is not, since it is divisible by 1, 2, 7, and 14.

Use the % operator: x % y returns the remainder of x when divided by y.

def is_prime(n):
"""
>>> is_prime(10)
False
>>> is_prime(7)
True
>>> is_prime(1) # one is not a prime number!!
False
"""
if n == 1:

return False
k = 2
while k < n:

if n % k == 0:
return False

k += 1
return True

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Control, Python Lists

Q3: Unique Digits

Write a function that returns the number of unique digits in a positive integer.

Hints: You can use // and % to separate a positive integer into its one’s digit and the rest of its digits.

You may find it helpful to first define a function has_digit(n, k), which determines whether a number
n has digit k.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Control, Python Lists 5

def unique_digits(n):
"""Return the number of unique digits in positive integer n.

>>> unique_digits(8675309) # All are unique
7
>>> unique_digits(13173131) # 1, 3, and 7
3
>>> unique_digits(101) # 0 and 1
2
"""
unique = 0
while n > 0:

last = n % 10
n = n // 10
if not has_digit(n, last):

unique += 1
return unique

Alternate solution
def unique_digits_alt(n):

unique = 0
i = 0
while i < 10:

if has_digit(n, i):
unique += 1

i += 1
return unique

def has_digit(n, k):
"""Returns whether k is a digit in n.

>>> has_digit(10, 1)
True
>>> has_digit(12, 7)
False
"""
assert k >= 0 and k < 10
while n > 0:

last = n % 10
n = n // 10
if last == k:

return True
return False

We have provided two solutions: - In one solution, we look at the current digit, and check if the rest of the number
contains that digit or not. We only say it’s unique if the digit doesn’t exist in the rest. We do this for every digit. -
In the other, we loop through the numbers 0-9 and just call has_digit on each one. If it returns true then we know

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Control, Python Lists

the entire number contains that digit and we can one to our unique count.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	While and If
	Q1: Fizzbuzz

	Problem Solving
	Q2: Is Prime?
	Q3: Unique Digits

