
DATA C88C Higher-Order Functions, Environment Diagrams
Fall 2025 Discussion 3: September 15, 2025

Environment Diagrams
Draw an environment diagram for the code below. You can use paper or a tablet or the whiteboard. Then, step
through the diagram generated by Python Tutor to check your work.

def foo(x, y):
foo = bar
return foo(x, y)

def bar(z, x):
return z + y

y = 5
foo(1, 2)

See the web version of this resource for the environment diagram.

Here’s a blank diagram in case you’re using a tablet:

If you have questions, ask those around you or course staff instead of just looking up the answer!



2 Higher-Order Functions, Environment Diagrams

template

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Higher-Order Functions, Environment Diagrams 3

Higher-Order Functions
Remember the problem-solving approach from last discussion; it works just as well for implementing higher-order
functions.

1. Pick an example input and corresponding output. (This time it might be a function.)
2. Describe a process (in English) that computes the output from the input using simple steps.
3. Figure out what additional names you’ll need to carry out this process.
4. Implement the process in code using those additional names.
5. Determine whether the implementation really works on your original example.
6. Determine whether the implementation really works on other examples. (If not, you might need to revise step

2.)

Q1: Multi-Apply

Sometimes we want to apply a function more than once to a number. Implement multi-apply, which is a higher-order
function takes in a function f. It returns a function of the form g(x, y), which takes in two arguments. This new
function composes, or applies, f to x y times; for example, for y = 3, it would evaluate f(f(f(x))).

def multi_apply(f):
"""Returns a function g(x, y) that returns the result of applying f to x y times.

>>> def adder(x):
... return x + 1
>>> multi_add = multi_apply(adder)
>>> multi_add(3, 1)
4
>>> multi_add(4, 5)
9
>>> multi_add(5, 0)
5
"""
def g(x, y):

while y > 0:
x = f(x)
y -= 1

return x
return g

Don’t run Python to check your work unless you’re confident your answer is correct. You can check
it just by thinking!. If you get stuck, ask the staff for help.

Q2: Make Keeper

Implement make_keeper, which takes a positive integer n and returns a function f that takes as its argument another
one-argument function cond. When f is called on cond, it prints out the integers from 1 to n (including n) for which
cond returns a true value when called on each of those integers. Each integer is printed on a separate line.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



4 Higher-Order Functions, Environment Diagrams

def make_keeper(n):
"""Returns a function that takes one parameter cond and prints
out all integers 1..i..n where calling cond(i) returns True.

>>> def is_even(x): # Even numbers have remainder 0 when divided by 2.
... return x % 2 == 0
>>> make_keeper(5)(is_even)
2
4
>>> make_keeper(5)(lambda x: True)
1
2
3
4
5
>>> make_keeper(5)(lambda x: False) # Nothing is printed
"""
def f(cond):

i = 1
while i <= n:

if cond(i):
print(i)

i += 1
return f

No peeking! First try to implement it without the hint.

To return a function f, include def f(cond): as the first line of the implementation and return f as the last. The
f function should introduce i = 1 in order to loop through all integers, calling cond(i) to determine whether cond
returns true for each integer.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.


	Environment Diagrams
	Higher-Order Functions
	Q1: Multi-Apply
	Q2: Make Keeper


