
DATA C88C Mutability, Abstract Data Types
Fall 2025 Discussion 4: September 22, 2025

Abstract Data Types
Data abstraction is a powerful concept in computer science that allows programmers to treat code as objects — for
example, car objects, chair objects, people objects, etc. That way, programmers don’t have to worry about how code
is implemented — they just have to know what it does.

Data abstraction mimics how we think about the world. For example, when you want to drive a car, you don’t need
to know how the engine was built or what kind of material the tires are made of. You just have to know how to turn
the wheel and press the gas pedal.

An abstract data type consists of two types of functions:

• Constructors: functions that build the abstract data type.
• Selectors: functions that retrieve information from the data type.

Q1: Word

In this problem, we will implement two data abstractions from scratch to represent a language! Let’s first build an
abstraction for words, which will compose each language.

The word abstraction stores: 1. a word’s name 2. a word’s definition in English

Your first job will be to create the constructors and selectors for the word type in two ways (denoted by a and b).

• A clean, typical approach would be to use a list pair to bundle together attributes of our type. Can you come
up with two other implementations of the word ADT? Some ideas include using a dictionary or higher-order
functions!

Note: Concerning ourselves with the implementation of this ADT does put us “beneath” the abstraction
barrier. However, a takeaway from this problem is that as we move towards higher-level functionalities
(like translation), we no longer have to worry about the specifics of our original implementation. These
low-level details are abstracted away by our constructors and selectors!

2 Mutability, Abstract Data Types

#Implementation a
def make_word_a(name, definition):

"""
>>> yes = make_word_a('yes', 'affirmative response')
>>> get_word_name_a(yes), get_word_definition_a(yes)
('yes', 'affirmative response')
"""
def select(item):

if item == 'name':
return name

elif item == 'definition':
return definition

return select

def get_word_name_a(word):
return word('name')

def get_word_definition_a(word):
return word('definition')

#Implementation b
def make_word_b(name, definition):

"""
>>> yes = make_word_b('yes', 'affirmative response')
>>> get_word_name_b(yes), get_word_definition_b(yes)
('yes', 'affirmative response')
"""
return {'a': name, 'b': definition}

def get_word_name_b(word):
return word['a']

def get_word_definition_b(word):
return word['b']

def check_word_abstraction():
"""Check whether both constructors and selectors work properly.
>>> yes_a = make_word_a('yes', 'affirmative response')
>>> yes_b = make_word_b('yes', 'affirmative response')
>>> get_word_name_a(yes_a) == get_word_name_b(yes_b)
True
>>> get_word_definition_a(yes_a) == get_word_definition_b(yes_b)
True
>>> # Errors (can't mix implementations): get_word_name_a(yes_b)
"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Mutability, Abstract Data Types 3

Q2: Language

Now, implement an abstraction for language. The language ADT stores:

1. a language’s name
2. a list of word’s present in the language

Finally, using both the word and language ADTs, implement the two following functions:

• translate, which takes source_word, a word abstraction, and returns the name of the translated word in the
target language. If the word cannot be found, return 'Undefined'.

• update, which updates a language’s list of words with new_word.

Hint: When we translate a word to a different language, what attribute of the word remains the same?
From there, it’s just about searching for and accessing that attribute at the right location!

Hint: With abstract data types, we can construct (“create”) and select (“read”) data, but we can’t
exactly mutate them. To “update” a language, we should instead construct and return a new language
altogether!

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Mutability, Abstract Data Types

Paste your word ADT here!
def make_word(name, definition):

"""
>>> yes = make_word('yes', 'affirmative response')
>>> get_word_name(yes), get_word_definition(yes)
('yes', 'affirmative response')
"""
return [name, definition]

def get_word_name(word):
return word[0]

def get_word_definition(word):
return word[1]

Implement the language ADT here!
def make_language(name, words):

"""
>>> hi, there = make_word('hi', 'friendly greeting'), make_word('there', 'at that
place')
>>> english = make_language('english', [hi, there])
>>> get_language_name(english)
'english'
>>> for w in get_language_words(english):
... print(get_word_name(w))
...
hi
there
"""
return [name, words]

def get_language_name(language):
return language[0]

def get_language_words(language):
return language[1]

def translate(source_word, target):
"""Given a word, translate it into the 'target' language.

>>> hi_def, there_def = 'friendly greeting', 'at that place'
>>> hi, there = make_word('hi', hi_def), make_word('there', there_def)
>>> hiss = make_word('hiss', hi_def)
>>> english, parseltongue = make_language('english', [hi, there]), make_language('
parseltongue', [hiss])
>>> translate(hi, parseltongue)
'hiss'
"""
source_def = get_word_definition(source_word)
translated = [w for w in get_language_words(target) if get_word_definition(w) ==
source_def]
if translated:

return get_word_name(translated[0])
return 'Undefined'

def update(language, new_word):
"""Update the input `language` by adding 'new_word' to its words.

>>> hi, there = make_word('hi', 'friendly greeting'), make_word('there', 'at that
place')
>>> english = make_language('english', [hi, there])
>>> english = update(english, make_word('yes', 'used for affirmation'))
>>> for w in get_language_words(english):
... print(get_word_name(w))
...
hi
there
yes
"""
return make_language(get_word_name(language), get_language_words(language) + [
new_word])

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Mutability, Abstract Data Types 5

Mutability
Q3: Shuffle

Define a function shuffle that takes a sequence with an even number of elements (cards) and creates a new list that
interleaves the elements of the first half with the elements of the second half.

To interleave two sequences s0 and s1 is to create a new sequence such that the new sequence contains (in this order)
the first element of s0, the first element of s1, the second element of s0, the second element of s1, and so on.

Note: If you’re running into an issue where the special heart / diamond / spades / clubs symbols are
erroring in the doctests, feel free to copy paste the below doctests into your file as these don’t use the
special characters and should not give an “illegal multibyte sequence” error.

def shuffle(s):
"""Return a shuffled list that interleaves the two halves of s.

>>> shuffle(range(6))
[0, 3, 1, 4, 2, 5]
>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
>>> shuffle(letters)
['a', 'e', 'b', 'f', 'c', 'g', 'd', 'h']
>>> shuffle(shuffle(letters))
['a', 'c', 'e', 'g', 'b', 'd', 'f', 'h']
>>> letters # Original list should not be modified
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
"""
assert len(s) % 2 == 0, 'len(seq) must be even'
half = len(s) // 2
shuffled = []
for i in range(half):

shuffled.append(s[i])
shuffled.append(s[half + i])

return shuffled

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Abstract Data Types
	Q1: Word
	Q2: Language

	Mutability
	Q3: Shuffle

