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Computational Concepts Toolbox

- Data type: values, literals, * lteration:
operations, — data-driven (list
— e.g., int, float, string comprehension)
* Expressions, Call — control-driven (for
expression statement)
* Variables — while statement
* Assignment Statement « Higher Order Functions
« Sequences: tuple, list — Functions as Values
— indexing — Functions with functions as
« Data structures argtfment :
] — Assignment of function
* Tuple assignment values

_+» Call Expressions Higher order function

#~Function Definition patterns
gl Statement — Map, Filter, Reduce

Conditional Statement Function factories — create
and return functions
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Today: Recursion

re-cur-sion
[ri'karZHan/ ©

noun MATHEMATICS LINGUISTICS

the repeated application of a recursive procedure or definition.

. a recursive definition.
plural noun: recursions

re-cur-sive
[ri'’karsiv/ 4

adjective

characterized by recurrence or repetition, in particular.

« MATHEMATICS  LINGUISTICS
relating to or involving the repeated application of a rule, definition, or procedure to
successive results.

« COMPUTING

relating to or involving a program or routine of which a part requires the application
of the whole, so that its explicit interpretation requires in general many successive
executions.

* Recursive function calls itself, directly or indirectly
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Administrative Issues

 Windows conda install resolved ???
Project 1 due Wednesday

Tourney play to take place in stages

— Early rounds prior to Monday 2/29
— Final rounds in lab !!!

— PreSeason games anyone?

Midterm Friday 3/4 5-7 pm in 405 Soda

— Review next week

HW 03 out today
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Review: Higher Order Functions

* Functions that operate on functions
* A function

def odd(x):
return x%2

>>> odd(3)
1 Why is this
. . not ‘odd’ ?
* A function that takes a function arg
i

def filter(fun, s):

return [x for x in s if fun(x)]

>>> filter(odd, [0,1,2,3,4,5,6,7])
[1, 3, 5, 7]
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Review Higher Order Functions (cont)

A function that returns (makes) a function

def leq maker(c):
def leqg(val):
return val <= ¢
return leq

>>> leq maker(3)
<function leq maker.<locals>.leq at 0x1019d8c80>

>>> leq maker(3)(4)
False

>>> filter(leq maker(3), [0,1,2,3,4,5,6,7])

[Ol 1, 2, 3]
>>>
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One more example

« What does this function do?

def split fun(p, s):
mrr Returns <you fill this in>.
return [1i for 1 in s if p(1i)], [1 for i in s if not p(1i)]

>>> split fun(leq maker(3), [0,1,2,3,4,5,61])
(o, 1, 2, 31, [4, 5, 6])
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Recursion Key concepts — by example

1. Test for simple “base” case 2. Solution in simple “base” case

def suﬁ;Pf_squares )
if n < 1:
return O

else:
return n**2 + sum of squares(n-1)

AN

4. Transform soln of simpler 3. Assume recusive solution
problem into full soln to simpler problem

 Linear recursion
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In words

* The sum of no numbers is zero

« The sum of 12 through n?is n? plus the sum of 12
through (n-1)2

def sum of squares(n):
if n < 1:
return O

else:
return n**2 + sum of squares(n-1)
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Why does it work

sum_of squares(3)

# sum of squares(3) => 3**2 + sum of squares(2)

# => 3%*2 + 2**2 + sum of squares(1l)

# => 3**2 4+ 2**2 + 1**2 + sum of squares(0)
# => 3%%2 4+ 2*%*2 + 1**2 + 0 = 14
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How does it work?

« Each recursive call gets its own local variables
— Just like any other function call

« Computes its result (possibly using additional
calls)
— Just like any other function call

« Returns its result and returns control to its caller
— Just like any other function call

* The function that is called happens to be itself

— Called on a simpler problem
— Eventually bottoms out on the simple base case

 Reason about correctness “by induction”
— Solve a base case
— Assuming a solution to a smaller problem, extend it
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Local variables

def sum of squares(n)
n_squared = n**2
if n < 1:

return 0O
else:

return n_squared |+ | sum_of squares(n-1)

« Each call has its own “frame” of local variables
 What about globals?
* Let’s see the environment diagrams
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Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2 /4)
ifno==1: sum_of_squares
return 1
else:

return n_squared + sum_of_squares(n-1)

=) sum_of_squares(3)

Edit code

<<First <Back Step 2 of 17 Forward> Last >>

Python 3.3 Frames Objects
= def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Globall

n_squared = n**2
. sum_of_squares
if n ==

return 1
else: fl: sum_of_squares [parent=Global]

return n_squared + sum_of_squares(n-1) n 3

sum_of_squares(3)

Edit code

<<First <Back Step 3 of 17 | Forward > Last >>

pythontutor.com
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Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Globall
n_squared = n**2
. sum_of_squares
if n ==
return 1
else: fl: sum_of_squares [parent=Global]
return n_squared + sum_of_squares(n-1) n '3
n_squared 9
sum_of_squares(3) ==

Edit code
0

<<First ~<Back Step 5o0f 17 | Forward> | Last>>

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2
if o == sum_of_squares
return 1
else: fl: sum_of_squares [parent=Globall
return n_squared + sum_of_squares(n-1) n 3
n_squared 9
sum_of_squares(3) =
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-

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0

<<First <Back Step 9 of 17 | Forward> | Last>>

Global frame

Global frame
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Frames

sum_of_squares

fl: sum_of_squares [parent=Globall]

n 3

n_squared |9

f2: sum_of_squares [parent=Globall]

n 2

Frames

sum_of_squares

fl: sum_of_squares [parent=Globall

n |3

n_squared |9

f2: sum_of_squares [parent=Globall

n 2

n_squared 4

Objects

func sum_of_squares(n) [parent=Global]

Objects

func sum_of_squares(n) [parent=Global]



Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
- return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0
<<First <Back Step 10 of 17 | Forward> | Last>>

Python 3.3

-—) def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0
<< First <Back Step 11 of 17 | Forward > Last >>

that has just executed
: line to execute

Frames Objects

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

fl: sum_of_squares [parent=Globall
n |3

n_squared |9

f2: sum_of_squares [parent=Globall
n 2

n_squared 4

Frames Objects

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared |4

f3: sum_of_squares [parent=Globall]

n 1
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Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
- if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0
<<First  <Back Step 13 0of 17 | Forward> | Last>>

that has just executed
t line to execute

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n == 1:
-—) return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

<<First <Back Step 14 of 17 | Forward > Last >>

that has just executed
t line to execute

Frames Objects

Global frame func sum_of_squares(n)

sum_of_squares

fl: sum_of_squares [parent=Global]
n 3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]
n 1

n_squared |1

Frames Objects

Global frame func sum_of_squares(n)

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]
n 1

n_squared |1

[parent=Global]

[parent=Global]



Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared +

sum_of_squares(3)

Edit code

<<First  <Back Step 15 of 17

e that has just executed
xt line to execute

sum_of_squares(n-1)

Forward > Last >>

Frames

Global frame

sum_of_squares

fl: sum_of_squares [parent=Globall]
n |3

n_squared |9

f2: sum_of_squares [parent=Globall
n 2

n_squared 4

f3: sum_of_squares [parent=Globall]
n 1
n_squared |1

Return 1
value
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Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2
. _ sum_of_squares
if n ==
return 1
else: fl: sum_of_squares [parent=Globall
=3 return n_squared + sum_of_squares(n-1) n '3
n_squared |9
sum_of_squares(3)
Edit code f2: sum_of_squares [parent=Globall
0 n 2
<<First  <Back Step 16 of 17 | Forward > Last >> n_squared 4
Return 5
: that has just executed value

<t line to execute
f3: sum_of_squares [parent=Globall]

n 1

n_squared |1

Return
value
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Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2
. sum_of_squares
if n ==
return 1
else: fl: sum_of_squares [parent=Globall]
= return n_squared + sum_of_squares(n-1) n 3
n_squared |9
sum_of_squares(3)
Return 14
Edit code Al
U f2: sum_of_squares [parent=Globall]
<<First | <Back Step 17 of 17 | Forward> | Last>> n |2
2 that has just executed n_squared |4
<t line to execute Return
value

f3: sum_of_squares [parent=Globall]
n (1
n_squared |1

Return 1
value
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Questions

* In what order do we sum the squares ?
 How does this compare to iterative approach ?

def sum of squares(n):
accum = 0
for i1 in range(l,n+l):
accum = accum + i*i
return accum
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Another Example

def first(s):
"""Return the first element in a sequence.
return s[0]

def rest(s):
"""Return all elements in a sequence after the first

return s[1l:]

def min r(s):
#“#rr"Return minimum value in a sequence.”””

* Recursion over sequence length, rather than
number magnitude
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Visualize its behavior (print)

In [104]: def min r(s):
print('min r:', s)

if len(s) ==
return first(s)

else:
result = min(first(s), min_r(rest(s)))
print('min r:', s," => ", result)

return result

In [105]: min r([3,4,2,5,11])

min r: [3, 4, 2, 5, 11]
min r: [4, 2, 5, 11]
min r: [2, 5, 11]

min r: [5, 11]

min r: [11]

min r: [5, 11] => 5

min r: [2, 5, 11] => 2

min r: [4, 2, 5, 11] => 2
min r: [3, 4, 2, 5, 11] => 2

« What about sum?

 Don’t confuse print with return value
UCB CS88 Sp16 L4



Recursion with Higher Order Fun

def map(f, s):

else:

def square(x):
return x**2

>>> map (square, [2,4,6])
[4, 16, 36]

* Divide and conquer
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Trust ...

* The recursive “leap of faith” works as long as we
hit the base case eventually
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How much 7?7?77

Time is required to compute

sum of squares(n)? Linear
— Recursively? proportional to n
— lteratively ? cn for some ¢

Space is required to compute
sum of squares(n)?

— Recursively?

— lteratively ?

Count the frames...
Recursive is linear, iterative is constant !
And what about the order of evaluation ?
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Tail Recursion

- All the work happens on the way down the
recursion

 On the way back up, just return

def sum up squares(i, n, accum):
"""Sum the squares from i to n in incr. order

if i > n:

else:

>>> sum_up_squares(1l,3,0)
14
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Edef sum_upper (i, accum):
' if i > n:
return accum
else:

return sum_upper(1l,0)

 What are the globals and locals in a call to
sum_upper?
— Try python tutor
» Lexical (static) nesting of function def within def - vs

 Dynamic nesting of function call within call
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Tree Recursion

* Break the problem into multiple smaller sub-
problems, and Solve them recursively

def split(x, s):
return [i for i in s if i <= x], [i for i in s if i > x]

def gsort(s):
"""Sort a sequence - split it by the first element,
sort both parts and put them back together."””
if not s:
return [ ]
else:
pivot = first(s)
lessor, more = split(pivot, rest(s))
return gsort(lessor) + [pivot] + gsort(more)

>>> gsort([3,3,1,4,5,4,3,2,1,17])
[ll 1! 2! 3! 3! 3! 4' 4' 5' 17]
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QuickSort Example

(3)3, 1, 4,5, 4,3, 2,1, 17)
(3)1, 3, 2, 1] [4,)5, 4, 17)
(1,)3, 2, 1] [ [ay 5,) 17)
(1) 3,) 2] (1] 0] 1| (17)

il (2) o [4] (1] 0

[1] [1][] [5, 17]

[2, 3] [4, 4, 5, 17]

[1I 1’ 2’ 3’ 3’ 3’ 4’ 4’ 5’ 17]
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Tree Recursion with HOF

def gsort(s):
"""Sort a sequence - split it by the first element,

sort both parts and put them back together.""”

if not s:
return [ ]
else:
pivot = first(s)
lessor, more = split fun(leq maker(pivot), rest(s))
return gsort(lessor) + [pivot] + gsort(more)

>>> gsort([3,3,1,4,5,4,3,2,1,17])
rr, 1, 2, 3, 3, 3, 4, 4, 5, 17]
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