Recursion

David E. Culler
CS8 — Computational Structures in Data Science
http://inst.eecs.berkeley.edu/~cs88

Lecture 5
Feb 22, 2016

Computational Concepts Toolbox

- Data type: values, literals, * lteration:
operations, — data-driven (list
— e.g., int, float, string comprehension)
* Expressions, Call — control-driven (for
expression statement)
* Variables — while statement
* Assignment Statement « Higher Order Functions
« Sequences: tuple, list — Functions as Values
— indexing — Functions with functions as
« Data structures argtfment :
] — Assignment of function
* Tuple assignment values

_+» Call Expressions Higher order function

#~Function Definition patterns
gl Statement — Map, Filter, Reduce

Conditional Statement Function factories — create
and return functions

UCB CS88 Sp16 L4

Today: Recursion

re-cur-sion
[ri'karZHan/ ©

noun MATHEMATICS LINGUISTICS

the repeated application of a recursive procedure or definition.

. a recursive definition.
plural noun: recursions

re-cur-sive
[ri'’karsiv/ 4

adjective

characterized by recurrence or repetition, in particular.

« MATHEMATICS LINGUISTICS
relating to or involving the repeated application of a rule, definition, or procedure to
successive results.

« COMPUTING

relating to or involving a program or routine of which a part requires the application
of the whole, so that its explicit interpretation requires in general many successive
executions.

* Recursive function calls itself, directly or indirectly

UCB CS88 Sp16 L4

Administrative Issues

 Windows conda install resolved ???
Project 1 due Wednesday

Tourney play to take place in stages

— Early rounds prior to Monday 2/29
— Final rounds in lab !!!

— PreSeason games anyone?

Midterm Friday 3/4 5-7 pm in 405 Soda

— Review next week

HW 03 out today

UCB CS88 Sp16 L4

Review: Higher Order Functions

* Functions that operate on functions
* A function

def odd(x):
return x%2

>>> odd(3)
1 Why is this
. . not ‘odd’ ?
* A function that takes a function arg
i

def filter(fun, s):

return [x for x in s if fun(x)]

>>> filter(odd, [0,1,2,3,4,5,6,7])
[1, 3, 5, 7]

UCB CS88 Sp16 L4

Review Higher Order Functions (cont)

A function that returns (makes) a function

def leq maker(c):
def leqg(val):
return val <= ¢
return leq

>>> leq maker(3)
<function leq maker.<locals>.leq at 0x1019d8c80>

>>> leq maker(3)(4)
False

>>> filter(leq maker(3), [0,1,2,3,4,5,6,7])

[Ol 1, 2, 3]
>>>

UCB CS88 Sp16 L4

One more example

« What does this function do?

def split fun(p, s):
mrr Returns <you fill this in>.
return [1i for 1 in s if p(1i)], [1 for i in s if not p(1i)]

>>> split fun(leq maker(3), [0,1,2,3,4,5,61])
(o, 1, 2, 31, [4, 5, 6])

UCB CS88 Sp16 L4

Recursion Key concepts — by example

1. Test for simple “base” case 2. Solution in simple “base” case

def suﬁ;Pf_squares)
if n < 1:
return O

else:
return n**2 + sum of squares(n-1)

AN

4. Transform soln of simpler 3. Assume recusive solution
problem into full soln to simpler problem

 Linear recursion

UCB CS88 Sp16 L4

In words

* The sum of no numbers is zero

« The sum of 12 through n?is n? plus the sum of 12
through (n-1)2

def sum of squares(n):
if n < 1:
return O

else:
return n**2 + sum of squares(n-1)

UCB CS88 Sp16 L4

Why does it work

sum_of squares(3)

sum of squares(3) => 3**2 + sum of squares(2)

=> 3%*2 + 2**2 + sum of squares(1l)

=> 3**2 4+ 2**2 + 1**2 + sum of squares(0)
=> 3%%2 4+ 2*%*2 + 1**2 + 0 = 14

UCB CS88 Sp16 L4

How does it work?

« Each recursive call gets its own local variables
— Just like any other function call

« Computes its result (possibly using additional
calls)
— Just like any other function call

« Returns its result and returns control to its caller
— Just like any other function call

* The function that is called happens to be itself

— Called on a simpler problem
— Eventually bottoms out on the simple base case

 Reason about correctness “by induction”
— Solve a base case
— Assuming a solution to a smaller problem, extend it

UCB CS88 Sp16 L4

Local variables

def sum of squares(n)
n_squared = n**2
if n < 1:

return 0O
else:

return n_squared |+ | sum_of squares(n-1)

« Each call has its own “frame” of local variables
 What about globals?
* Let’s see the environment diagrams

UCB CS88 Sp16 L4

Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2 /4)
ifno==1: sum_of_squares
return 1
else:

return n_squared + sum_of_squares(n-1)

=) sum_of_squares(3)

Edit code

<<First <Back Step 2 of 17 Forward> Last >>

Python 3.3 Frames Objects
= def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Globall

n_squared = n**2
. sum_of_squares
if n ==

return 1
else: fl: sum_of_squares [parent=Global]

return n_squared + sum_of_squares(n-1) n 3

sum_of_squares(3)

Edit code

<<First <Back Step 3 of 17 | Forward > Last >>

pythontutor.com

UCB CS88 Sp16 L4

Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Globall
n_squared = n**2
. sum_of_squares
if n ==
return 1
else: fl: sum_of_squares [parent=Global]
return n_squared + sum_of_squares(n-1) n '3
n_squared 9
sum_of_squares(3) ==

Edit code
0

<<First ~<Back Step 5o0f 17 | Forward> | Last>>

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2
if o == sum_of_squares
return 1
else: fl: sum_of_squares [parent=Globall
return n_squared + sum_of_squares(n-1) n 3
n_squared 9
sum_of_squares(3) =

UCB CS88 Sp16 L4

-

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0

<<First <Back Step 9 of 17 | Forward> | Last>>

Global frame

Global frame

UCB CS88 Sp16 L4

Frames

sum_of_squares

fl: sum_of_squares [parent=Globall]

n 3

n_squared |9

f2: sum_of_squares [parent=Globall]

n 2

Frames

sum_of_squares

fl: sum_of_squares [parent=Globall

n |3

n_squared |9

f2: sum_of_squares [parent=Globall

n 2

n_squared 4

Objects

func sum_of_squares(n) [parent=Global]

Objects

func sum_of_squares(n) [parent=Global]

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
- return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0
<<First <Back Step 10 of 17 | Forward> | Last>>

Python 3.3

-—) def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0
<< First <Back Step 11 of 17 | Forward > Last >>

that has just executed
: line to execute

Frames Objects

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

fl: sum_of_squares [parent=Globall
n |3

n_squared |9

f2: sum_of_squares [parent=Globall
n 2

n_squared 4

Frames Objects

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared |4

f3: sum_of_squares [parent=Globall]

n 1

UCB CS88 Sp16 L4

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
- if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0
<<First <Back Step 13 0of 17 | Forward> | Last>>

that has just executed
t line to execute

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n == 1:
-—) return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

<<First <Back Step 14 of 17 | Forward > Last >>

that has just executed
t line to execute

Frames Objects

Global frame func sum_of_squares(n)

sum_of_squares

fl: sum_of_squares [parent=Global]
n 3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]
n 1

n_squared |1

Frames Objects

Global frame func sum_of_squares(n)

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]
n 1

n_squared |1

[parent=Global]

[parent=Global]

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared +

sum_of_squares(3)

Edit code

<<First <Back Step 15 of 17

e that has just executed
xt line to execute

sum_of_squares(n-1)

Forward > Last >>

Frames

Global frame

sum_of_squares

fl: sum_of_squares [parent=Globall]
n |3

n_squared |9

f2: sum_of_squares [parent=Globall
n 2

n_squared 4

f3: sum_of_squares [parent=Globall]
n 1
n_squared |1

Return 1
value

UCB CS88 Sp16 L4

Objects

func sum_of_squares(n) [parent=Globall]

Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2
. _ sum_of_squares
if n ==
return 1
else: fl: sum_of_squares [parent=Globall
=3 return n_squared + sum_of_squares(n-1) n '3
n_squared |9
sum_of_squares(3)
Edit code f2: sum_of_squares [parent=Globall
0 n 2
<<First <Back Step 16 of 17 | Forward > Last >> n_squared 4
Return 5
: that has just executed value

<t line to execute
f3: sum_of_squares [parent=Globall]

n 1

n_squared |1

Return
value

UCB CS88 Sp16 L4

Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2
. sum_of_squares
if n ==
return 1
else: fl: sum_of_squares [parent=Globall]
= return n_squared + sum_of_squares(n-1) n 3
n_squared |9
sum_of_squares(3)
Return 14
Edit code Al
U f2: sum_of_squares [parent=Globall]
<<First | <Back Step 17 of 17 | Forward> | Last>> n |2
2 that has just executed n_squared |4
<t line to execute Return
value

f3: sum_of_squares [parent=Globall]
n (1
n_squared |1

Return 1
value

UCB CS88 Sp16 L4

Questions

* In what order do we sum the squares ?
 How does this compare to iterative approach ?

def sum of squares(n):
accum = 0
for i1 in range(l,n+l):
accum = accum + i*i
return accum

UCB CS88 Sp16 L4

Another Example

def first(s):
"""Return the first element in a sequence.
return s[0]

def rest(s):
"""Return all elements in a sequence after the first

return s[1l:]

def min r(s):
#“#rr"Return minimum value in a sequence.”””

* Recursion over sequence length, rather than
number magnitude

2/22/16 UCB CS88 Sp16 L4 22

Visualize its behavior (print)

In [104]: def min r(s):
print('min r:', s)

if len(s) ==
return first(s)

else:
result = min(first(s), min_r(rest(s)))
print('min r:', s," => ", result)

return result

In [105]: min r([3,4,2,5,11])

min r: [3, 4, 2, 5, 11]
min r: [4, 2, 5, 11]
min r: [2, 5, 11]

min r: [5, 11]

min r: [11]

min r: [5, 11] => 5

min r: [2, 5, 11] => 2

min r: [4, 2, 5, 11] => 2
min r: [3, 4, 2, 5, 11] => 2

« What about sum?

 Don’t confuse print with return value
UCB CS88 Sp16 L4

Recursion with Higher Order Fun

def map(f, s):

else:

def square(x):
return x**2

>>> map (square, [2,4,6])
[4, 16, 36]

* Divide and conquer

2/22/16 UCB CS88 Sp16 L4 24

Trust ...

* The recursive “leap of faith” works as long as we
hit the base case eventually

UCB CS88 Sp16 L4

How much 7?7?77

Time is required to compute

sum of squares(n)? Linear
— Recursively? proportional to n
— lteratively ? cn for some ¢

Space is required to compute
sum of squares(n)?

— Recursively?

— lteratively ?

Count the frames...
Recursive is linear, iterative is constant !
And what about the order of evaluation ?

UCB CS88 Sp16 L4

Tail Recursion

- All the work happens on the way down the
recursion

 On the way back up, just return

def sum up squares(i, n, accum):
"""Sum the squares from i to n in incr. order

if i > n:

else:

>>> sum_up_squares(1l,3,0)
14

2/22/16 UCB CS88 Sp16 L4

27

Edef sum_upper (i, accum):
' if i > n:
return accum
else:

return sum_upper(1l,0)

 What are the globals and locals in a call to
sum_upper?
— Try python tutor
» Lexical (static) nesting of function def within def - vs

 Dynamic nesting of function call within call

UCB CS88 Sp16 L4

Tree Recursion

* Break the problem into multiple smaller sub-
problems, and Solve them recursively

def split(x, s):
return [i for i in s if i <= x], [i for i in s if i > x]

def gsort(s):
"""Sort a sequence - split it by the first element,
sort both parts and put them back together."””
if not s:
return []
else:
pivot = first(s)
lessor, more = split(pivot, rest(s))
return gsort(lessor) + [pivot] + gsort(more)

>>> gsort([3,3,1,4,5,4,3,2,1,17])
[ll 1! 2! 3! 3! 3! 4' 4' 5' 17]

UCB CS88 Sp16 L4

QuickSort Example

(3)3, 1, 4,5, 4,3, 2,1, 17)
(3)1, 3, 2, 1] [4,)5, 4, 17)
(1,)3, 2, 1] [[ay 5,) 17)
(1) 3,) 2] (1] 0] 1| (17)

il (2) o [4] (1] 0

[1] [1][] [5, 17]

[2, 3] [4, 4, 5, 17]

[1I 1’ 2’ 3’ 3’ 3’ 4’ 4’ 5’ 17]

UCB CS88 Sp16 L4

Tree Recursion with HOF

def gsort(s):
"""Sort a sequence - split it by the first element,

sort both parts and put them back together.""”

if not s:
return []
else:
pivot = first(s)
lessor, more = split fun(leq maker(pivot), rest(s))
return gsort(lessor) + [pivot] + gsort(more)

>>> gsort([3,3,1,4,5,4,3,2,1,17])
rr, 1, 2, 3, 3, 3, 4, 4, 5, 17]

UCB CS88 Sp16 L4

