Computational Concepts Toolbox

» Data type: values, literals, ¢ lteration:

operations, — data-driven (list
. - e.g, int, float, string comprehension)
Recursion * Expressions, Call — control-driven (for
expression statement)
+ Variables — while statement
David E. Culler * Assignment Statement + Higher Order Functions
CS8 — Computational Structures in Data Science * Sequences: tuple, list - Functions as Values
— indexing — Functions with functions as

argument
— Assignment of function

http://inst.eecs.berkeley.edu/~cs88 . Data structures

* Tuple assignment values
Lecture 5 _+ Call Expressions + Higher order function
Feb 22, 2016 #~Function Definition patterns
Statement — Map, Filter, Reduce
Conditional Statement * Function factories — create

and return functions

UCB CS88 Sp16 L4

Today: Recursion Administrative Issues

/I’ek'C;l;Ir'/Slon + Windows conda install resolved ???
ri'karZHan/ © .
* Project 1 due Wednesday
noun MATHEMATICS LINGUISTICS
the repeated application of a recursive procedure or definition. ° Tourney play tO take place n stages
- arecursive definition. — Early rounds prior to Monday 2/29
plural noun: recursions
. — Final rounds in lab !!!
re-cur-sive — PreSeason games anyone?
Irikersiv/ » Midterm Friday 3/4 5-7 pm in 405 Soda
adjective — Review next week
characterized by recurrence or repetition, in particular.
+ MATHEMATICS LINGUISTICS + HW 03 out tOday

relating to or involving the repeated application of a rule, definition, or procedure to
successive results.

« COMPUTING

relating to or involving a program or routine of which a part requires the application
of the whole, so that its explicit interpretation requires in general many successive
executions.

* Recursive function calls itself, directly or indirectly

UCB CS88 Sp16 L4 UCB CS88 Sp16 L4

Review: Higher Order Functions Review Higher Order Functions (cont)

* Functions that operate on functions * A function that returns (makes) a function
+ A function

def leq maker(c):

def odd(x): def leg(val):
return x%2 return val <= c
return leq

>>> odd(3)
1 R .

Wh¥ is t,hIS >>> leq maker(3)

« A function that takes a function arg not ‘odd’ ? <function leq maker.<locals>.leq at 0x1019d8c80>
s
def filter(fun, s): //449/ >>> leq_maker(3)(4)
False

return [x for x in s if fun(x)]
>>> filter(leq_maker(3), [0,1,2,3,4,5,6,7])
>>> filter(odd, [0,1,2,3,4,5,6,7]) [0, 1, 2, 3]

[lr 3! 51 7] >>>

UCB CS88 Sp16 L4 UCB CS88 Sp16 L4

One more example Recursion Key concepts — by example

. . n

* What does this function do? 1. Test for simple “base” case 2. Solution in simple “base” case
def split fun(p, s): \

mmn Returns <you fill this in>.""" def su f squares

return [i for i in s if p(i)], [1i for i in s if not p(i)] if n <—1

return O
else:

>>> split fun(leq_maker(3), [0,1,2,3,4,5,6]) return n**2 + sum of squares(n—l)
(ro, 1, 2, 31, [4, 5, 61) 7 A

3. Assume recusive solution

4. Transform soln of simpler \
to simpler problem

problem into full soln

¢ Linear recursion

UCB CS88 Sp16 L4 UCB CS88 Sp16 L4

In words

 The sum of no numbers is zero

« The sum of 12 through n2is n2 plus the sum of 12
through (n-1)?2

def sum_of squares(n):
if n < 1:
return O
else:
return n**2 + sum_of_ squares(n-1)

UCB CS88 Sp16 L4

How does it work?

» Each recursive call gets its own local variables
— Just like any other function call

« Computes its result (possibly using additional

calls)

— Just like any other function call

* Returns its result and returns control to its caller
— Just like any other function call

» The function that is called happens to be itself

— Called on a simpler problem
— Eventually bottoms out on the simple base case

* Reason about correctness “by induction”
— Solve a base case
— Assuming a solution to a smaller problem, extend it

UCB CS88 Sp16 L4

Why does it work

sum_of_squares(3)

sum_of_squares(3) => 3**2 + sum_of_squares(2)

=> 3**2 + 2**2 + sum_of_ squares(1l)

=> 3*%2 + 2%*2 + 1**2 + sum_of_squares(0)
=> 3**2 + 2*%%2 + 1**2 + 0 = 14

UCB CS88 Sp16 L4

Local variables

def sum_of_squares{:}:
n_squared |= nx+2
if n < 1:
return O
else:
return n_squared sum_of_ squares(n-1)

« Each call has its own “frame” of local variables
* What about globals?
* Let’s see the environment diagrams

UCB CS88 Sp16 L4

Environments Example

Python 3.3 Frames Objects

Environments Example

Python 3.3 Frames Objects

loval £ def sum_of_squares(n):
obal frame n_squared = n**2

/—rﬂmc sun_of_squares(n) [parent=Global]
sum_of_squares - if n ==

return 1
return 1 else: 1: sum_of_squares [parent=Global]

Global frame func sum_of_squares(n) [parent=Global]

def sum_of_squares(n):
n_squared = n**2
if n==

sum_of_squares

else: return n_squared + sum_of_squares(n-1) nl3

return n_squared + sum_of_squares(n-1)

- _oT_ n_squared 9
sum_of_squares(3)

- sum_of_squares(3) N
- = Edit code

Edit code 0

<<First <Back Step 50f 17 [Foward>) Last>>
<<First <Back Step20f 17 Forward> Last>>
Python 3.3 Frames Objects

def sum_of_squares(n):
n_squared = n**2

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

Python 3.3 Frames Objects o,
return 1
=1 def Sum,of,sguareiig)i Global frame func sum_of_squares(n) [parent=Global] else: f1: sum_of_squares [parent=Global]
n_squared = n
e : ar sum_of_squares - return n_squared + sum_of_squares(n-1) 3
return 1 n_squared |9
else: 1: sum_of_squares [parent=Global] sum_of_squares(3)
return n_squared + sum_of_squares(n-1) nla
sun_of_squares(3)
Edit code
<<Frst | <Back Step 3 of 17 | Forward> | Last>>
pythontutor.com
UCB CS88 Sp16 L4 UCB CS88 Sp16 L4
Environments Example Environments Example
Python 3.3 Frames Objects
Python 3.3 Frames Objects
=1 def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global] N
n_squared = n**2 def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
1osauared sum_of_squares n_squared = n*%2
: P i sum_of_squares
return 1 itn==1
else: f1: sum_of_squares [parent=Global] return 1
return n_squared + sum_of_squares(n-1) nls else: 1: sum_of_squares [parent=Globall
- return n_squared + sum_of_squares(n-1) nl3

n_squared |9
sum_of_squares (3) . P n_squared |9
sum_of_squares

sum_of_squares (3)

n_squared |9

return n_squared + sum_of_squares(n-1)

sum_of_squares (3)

n 3

n_squared |9

Edit code £2: sum_of_squares [parent=Global]
i n 2 Edit code £2: sum_of_squares [parent=Global]
<<Fist <Back Step 90f 17 [Foward> | | Last>> n_squared |4 { n 2

UCB CS88 Sp16 L4

<<First | <Back

that has just executed
 line to execute

Step 11 of 17

Forward >

Last>>

n_squared |4

3: sum_of_squares [parent=Global]
n 1

UCB CS88 Sp16 L4

Edit code f2: sum_of_squares [parent=Global]
0 a Edit code 2: sum_of_squares [parent=Global]
n
S n |2
<<First <Back Step 10 of 17 Forward> | Last>» n_squared |4
Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global] Python 3.3 Frames Objects
n_squared = n**2 .
n_sd . sum_of_squares = 1 def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
- if n==1 =0T
: n_squared = n**2
return 1 P sum_of_squares
else: 1: sum_of_squares [parent=Global] return 1
return n_squared + sum_of_squares(n-1) n 3 else: f1: sum_of_squares [parent=Global]

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
- ifn ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares (3)
Edit code
(
<<First <Back Step 13 of 17 | Forward> | Last>>

that has just executed
tline to execute

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n 1:

- return 1
else:

return n_squared + sum_of_squares(n-1)
sum_of_squares (3)

Edit code

<<Fist <Back Step 14 0f 17 [Foward> | | Last>>

that has just executed
tline to execute

Frames

Global frame

sum_of_squares

1: sum_of_squares [parent=Global]
n3
n_squared |9

2: sum_of_squares [parent=Global]
n2
n_squared |4

3: sum_of_squares [parent=Global]
ni1
n_squared |1

Frames

Global frame

sum_of_squares

f1: sum_of_squares [parent=Global]
n 3

n_squared |9

2: sum_of_squares [parent=Global]
n 2

n_squared 4

3: sum_of_squares [parent=Global]
nl1

n_squared |1

Environments Example

Python 3.3
def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares (3)

Edit code

<<Fist | <Back Step 16 0f 17 [Forward> | Last>>

+ that has just executed
 line to execute

Frames

Global frame

sum_of_squares

f1: sum_of_squares [parent=Global]
n3

n_squared |9

2: sum_of_squares [parent=Global]

n 2
n_squared 4

Return | ¢
value

3: sum_of_squares [parent=Global]
n 1
n_squared |1

Return

1
value

UCB CS88 Sp16 L4

Objects

func sum_of_squares(n) [parent=Global]

Objects

func sum_of_squares(n) [parent=Global]

Objects

func sum_of_squares(n) [parent=Global]

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n == 1:
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares (3)

Edit code

<<First | <Back = Step 150f 17 [Foward>) Last>>

e that has just executed
xt line to execute

Frames

Global frame

sum_of_squares

: sum_of_squares [parent=Global]
n3
n_squared |9

: sum_of_squares [parent=Global]
n 2
n_squared |4

: sum_of_squares [parent=Global]
n 1
n_squared 1

Return |4
value

UCB CS88 Sp16 L4

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n

return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares (3)

Edit code

<<Fit <Back Step 17 of 17 [Foward> | Last>>

» that has just executed
<t line to execute

Frames

Global frame

sum_of_squares

f1: sum_of_squares [parent=Globall
n 3
n_squared 9

Return |4,
value

2: sum_of_squares [parent=Globall
n |2
n_squared |4

Return |5
value

f3: sun_of_squares [parent=Global]
1

n_squared |1

Return |
value

UCB CS88 Sp16 L4

Objects

func sum_of_squares(n) [parent=Globall

Objects

func sum_of_squares(n) [parent=Global]

Questions

* In what order do we sum the squares ?
* How does this compare to iterative approach ?

def sum_of_squares(n):
accum = 0
for i in range(l,n+l):
accum = accum + i*i
return accum

<)
Y]
[

UCB CS88 Sp16 L4 21

Visualize its behavior (print)

In [104]: def min r(s):

print('min r:', s)

if len(s) == 1l:
return first(s)

else:
result = min(first(s), min_r(rest(s)))
print('min r:', s," => ", result)
return result

In [105]: min_r([3,4,2,5,11])

min r: [3, 4, 2, 5, 11]

min r: [4, 2, 5, 11]

min r: [2, 5, 11]

min r: [5, 11]

min r: [11]

min r: [5, 11] => 5

min r: [2, 5, 11] => 2

min r: [4, 2, 5, 11] => 2
min r: [3, 4, 2, 5, 11] => 2

* What about sum?

* Don’t confuse print with return value
UCB CS88 Sp16 L4 23

<)
Y]
[

Another Example

def first(s):
"""Return the first element in a sequence.
return s[0]

def rest(s):
"""Return all elements in a sequence after the first
return s[1l:]

non

def min_r(s):
“nr"Return minimum value in a sequence.”””
if

else:

* Recursion over sequence length, rather than
number magnitude

<)
IS
[

22

UCB CS88 Sp16 L4

Recursion with Higher Order Fun

def map(f, s):

else:

def square(x):
return x**2

>>> map(square, [2,4,6])
[4, 16, 36]

» Divide and conquer

<)
IS
[

UCB CS88 Sp16 L4 24

Trust ...

» The recursive “leap of faith” works as long as we
hit the base case eventually

UCB CS88 Sp16 L4

Tail Recursion

» All the work happens on the way down the
recursion

* On the way back up, just return

def sum_up_squares(i, n, accum):
"""Sum the squares from i to n in incr. order
if i > n:

| Base Case |
else:

Tail Recursive Case

>>> sum_up_squares(1l,3,0)
14

UCB CS88 Sp16 L4

How much ??7?

» Time is required to compute

sum_of_squares(n)? Linear
— Recursively? proportional to n
— Iteratively ? cn for some ¢

» Space is required to compute
sum_of_ squares(n)?
— Recursively?
— lteratively ?

Count the frames...
* Recursive is linear, iterative is constant !
* And what about the order of evaluation ?

UCB CS88 Sp16 L4

Using HOF to preserve interface

idef sum_upper (i, accum):
. if i > n:
return accum
else:

return sum_upper(1,0)

* What are the globals and locals in a call to
sum_upper?
— Try python tutor
+ Lexical (static) nesting of function def within def - vs

» Dynamic nesting of function call within call

UCB CS88 Sp16 L4

Tree Recursion QuickSort Example

* Break the problem into multiple smaller sub- ‘(> ‘
problems, and Solve them recursively 33,1, 4,5, 4,3, 2,1, 17]

def split(x, s):
return [i1 for i in s if i <= x], [1 for i in s if i > Xx]

def gsort(s):

3
)
"""Sort a sequence - split it by the first element, m \

sort both parts and put them back together."””

. I~

if not s: -Illlll ‘D E
return [] N]

else:

pivot = first(s)

lessor, more = split(pivot, rest(s)) [4 1

return gsort(lessor) + [pivot] + gsort(more)

>>> gsort([3,3,1,4,5,4,3,2,1,17]) ‘
[, 1, 2, 3, 3, 3, 4, 4, 5, 17]

=
~
—

(1, 1, 2, 3, 3, 3, 4, 4, 5,

UCB CS88 Sp16 L4 UCB CS88 Sp16 L4

Tree Recursion with HOF

def gsort(s):
"""Sort a sequence - split it by the first element,
sort both parts and put them back together.""”

if not s:
return []
else:
pivot = first(s)
lessor, more = split_fun(leq_maker(pivot), rest(s))
return gsort(lessor) + [pivot] + gsort(more)

>>> gsort([3,3,1,4,5,4,3,2,1,17])
rL, 1, 2, 3, 3, 3, 4, 4, 5, 17]

UCB CS88 Sp16 L4

