
Recursion

David E. Culler
 CS8 – Computational Structures in Data Science

http://inst.eecs.berkeley.edu/~cs88

Lecture 5
Feb 22, 2016

Computational Concepts Toolbox
•  Data type: values, literals,

operations,
–  e.g., int, float, string

•  Expressions, Call
expression

•  Variables
•  Assignment Statement
•  Sequences: tuple, list

–  indexing

•  Data structures
•  Tuple assignment
•  Call Expressions
•  Function Definition

Statement
•  Conditional Statement

•  Iteration:
–  data-driven (list

comprehension)
–  control-driven (for

statement)
– while statement

•  Higher Order Functions
–  Functions as Values
–  Functions with functions as

argument
–  Assignment of function

values

•  Higher order function
patterns

– Map, Filter, Reduce
•  Function factories – create

and return functions

2/22/16 UCB CS88 Sp16 L4 2

Today: Recursion

•  Recursive function calls itself, directly or indirectly
2/22/16 UCB CS88 Sp16 L4 3

Administrative Issues
•  Windows conda install resolved ???
•  Project 1 due Wednesday
•  Tourney play to take place in stages

–  Early rounds prior to Monday 2/29
–  Final rounds in lab !!!
–  PreSeason games anyone?

•  Midterm Friday 3/4 5-7 pm in 405 Soda
–  Review next week

•  HW 03 out today

2/22/16 UCB CS88 Sp16 L4 4

Review: Higher Order Functions
•  Functions that operate on functions
•  A function

•  A function that takes a function arg

2/22/16 UCB CS88 Sp16 L4 5

def odd(x):
 return x%2

>>> odd(3)
1

def filter(fun, s):
 return [x for x in s if fun(x)]

>>> filter(odd, [0,1,2,3,4,5,6,7])
[1, 3, 5, 7]

Why is this
not ‘odd’ ?

Review Higher Order Functions (cont)
•  A function that returns (makes) a function

2/22/16 UCB CS88 Sp16 L4 6

def leq_maker(c):
 def leq(val):
 return val <= c

 return leq

>>> leq_maker(3)
<function leq_maker.<locals>.leq at 0x1019d8c80>

>>> leq_maker(3)(4)
False

>>> filter(leq_maker(3), [0,1,2,3,4,5,6,7])
[0, 1, 2, 3]
>>>

One more example
•  What does this function do?

2/22/16 UCB CS88 Sp16 L4 7

def split_fun(p, s):
 ””” Returns <you fill this in>."""
 return [i for i in s if p(i)], [i for i in s if not p(i)]

>>> split_fun(leq_maker(3), [0,1,2,3,4,5,6])
([0, 1, 2, 3], [4, 5, 6])

Recursion Key concepts – by example

•  Linear recursion

2/22/16 UCB CS88 Sp16 L4 8

def sum_of_squares(n):
 if n < 1:
 return 0
 else:
 return n**2 + sum_of_squares(n-1)

1. Test for simple “base” case 2. Solution in simple “base” case

3. Assume recusive solution
to simpler problem

4. Transform soln of simpler
problem into full soln

In words
•  The sum of no numbers is zero
•  The sum of 12 through n2 is n2 plus the sum of 12

through (n-1)2

2/22/16 UCB CS88 Sp16 L4 9

def sum_of_squares(n):
 if n < 1:
 return 0
 else:
 return n**2 + sum_of_squares(n-1)

Why does it work

2/22/16 UCB CS88 Sp16 L4 10

sum_of_squares(3)

sum_of_squares(3) => 3**2 + sum_of_squares(2)
=> 3**2 + 2**2 + sum_of_squares(1)
=> 3**2 + 2**2 + 1**2 + sum_of_squares(0)
=> 3**2 + 2**2 + 1**2 + 0 = 14

How does it work?
•  Each recursive call gets its own local variables

–  Just like any other function call

•  Computes its result (possibly using additional
calls)

–  Just like any other function call

•  Returns its result and returns control to its caller
–  Just like any other function call

•  The function that is called happens to be itself
–  Called on a simpler problem
–  Eventually bottoms out on the simple base case

•  Reason about correctness “by induction”
–  Solve a base case
–  Assuming a solution to a smaller problem, extend it

2/22/16 UCB CS88 Sp16 L4 11

Local variables

•  Each call has its own “frame” of local variables
•  What about globals?
•  Let’s see the environment diagrams

2/22/16 UCB CS88 Sp16 L4 12

def sum_of_squares(n):
 n_squared = n**2
 if n < 1:
 return 0
 else:
 return n_squared + sum_of_squares(n-1)

Environments Example

2/22/16 UCB CS88 Sp16 L4 13

pythontutor.com

Environments Example

2/22/16 UCB CS88 Sp16 L4 14

Environments Example

2/22/16 UCB CS88 Sp16 L4 15

Environments Example

2/22/16 UCB CS88 Sp16 L4 16

Environments Example

2/22/16 UCB CS88 Sp16 L4 17

permlink

Environments Example

2/22/16 UCB CS88 Sp16 L4 18

Environments Example

2/22/16 UCB CS88 Sp16 L4 19

Environments Example

2/22/16 UCB CS88 Sp16 L4 20

Questions
•  In what order do we sum the squares ?
•  How does this compare to iterative approach ?

2/22/16 UCB CS88 Sp16 L4 21

def sum_of_squares(n):
 accum = 0
 for i in range(1,n+1):
 accum = accum + i*i
 return accum

Another Example

•  Recursion over sequence length, rather than
number magnitude

2/22/16 UCB CS88 Sp16 L4 22

def first(s):
 """Return the first element in a sequence."""
 return s[0]
def rest(s):
 """Return all elements in a sequence after the first"""
 return s[1:]

def min_r(s):
 “””Return minimum value in a sequence.”””
 if len(s) == 1:
 return first(s)
 else:
 return min(first(s), min_r(rest(s)))

Base Case

Recursive Case

Visualize its behavior (print)

•  What about sum?
•  Don’t confuse print with return value

2/22/16 UCB CS88 Sp16 L4 23

Recursion with Higher Order Fun

•  Divide and conquer

2/22/16 UCB CS88 Sp16 L4 24

def map(f, s):
 if not s:
 return []
 else:
 return [f(first(s))] + map(f, rest(s))

def square(x):
 return x**2

>>> map(square, [2,4,6])
[4, 16, 36]

Base Case

Recursive Case

Trust …

•  The recursive “leap of faith” works as long as we
hit the base case eventually

2/22/16 UCB CS88 Sp16 L4 25

How much ???
•  Time is required to compute
sum_of_squares(n)?

–  Recursively?
–  Iteratively ?

•  Space is required to compute
sum_of_squares(n)?

–  Recursively?
–  Iteratively ?

•  Count the frames…
•  Recursive is linear, iterative is constant !
•  And what about the order of evaluation ?

2/22/16 UCB CS88 Sp16 L4 26

Linear
proportional to n
cn for some c

Tail Recursion
•  All the work happens on the way down the

recursion
•  On the way back up, just return

2/22/16 UCB CS88 Sp16 L4 27

def sum_up_squares(i, n, accum):
 """Sum the squares from i to n in incr. order"""
 if i > n:
 return accum
 else:
 return sum_up_squares(i+1, n, accum + i**2)

>>> sum_up_squares(1,3,0)
14

Base Case

Tail Recursive Case

Using HOF to preserve interface

•  What are the globals and locals in a call to
sum_upper?

–  Try python tutor

•  Lexical (static) nesting of function def within def - vs
•  Dynamic nesting of function call within call

2/22/16 UCB CS88 Sp16 L4 28

def sum_of_squares(n):
 def sum_upper(i, accum):

 if i > n:
 return accum
 else:
 return sum_upper(i+1, accum + i*i)

 return sum_upper(1,0)

Tree Recursion
•  Break the problem into multiple smaller sub-

problems, and Solve them recursively

2/22/16 UCB CS88 Sp16 L4 29

def split(x, s):
 return [i for i in s if i <= x], [i for i in s if i > x]

def qsort(s):
 """Sort a sequence - split it by the first element,
 sort both parts and put them back together."””
 if not s:
 return []
 else:
 pivot = first(s)
 lessor, more = split(pivot, rest(s))
 return qsort(lessor) + [pivot] + qsort(more)

>>> qsort([3,3,1,4,5,4,3,2,1,17])
[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

QuickSort Example

2/22/16 UCB CS88 Sp16 L4 30

[3, 3, 1, 4, 5, 4, 3, 2, 1, 17]

[3, 1, 3, 2, 1] [4, 5, 4, 17]

[1, 3, 2, 1] []

[1] [3, 2]

[] []

[1]

[2] []

[] []

[2, 3]

[1, 1, 2, 3]

[1, 1, 2, 3, 3]

[4] [5, 17]

[] []

[4]

[] [17]

[] []

[5, 17]

[4, 4, 5, 17]

[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

Tree Recursion with HOF

2/22/16 UCB CS88 Sp16 L4 31

def qsort(s):
 """Sort a sequence - split it by the first element,
 sort both parts and put them back together.""”

 if not s:
 return []
 else:
 pivot = first(s)
 lessor, more = split_fun(leq_maker(pivot), rest(s))
 return qsort(lessor) + [pivot] + qsort(more)

>>> qsort([3,3,1,4,5,4,3,2,1,17])
[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

