
Iterators & Generators

Sequences

● A sequence is something that you can:

○ Index into

○ Get the length of

● What are some examples of sequences?

Sequences

● We’ve been working with sequences all semester!

● Examples:

○ Lists

○ Tuples

○ Strings

● Note: a dictionary is NOT a sequence

Demo

Iterables

● Any object that you can use a for loop over (more technical def. later)

● All sequences are iterable

● Examples:

○ Lists

○ Strings

○ Tuples

○ Dictionaries

Iterables

● So far, we have been treating iterables as sequences

● All sequences are iterables, but not at all iterables are sequences

● For example:

○ We can loop over elements of range(5) one at a time

○ What happens when we try to look at the whole range?

Iterables

● Functions that return objects that we can iterate over:

○ Range

○ Zip

○ Map

● These objects are not sequences

● If we want to see all of the elements at once, we need to explicitly call

list() or tuple() on them

Demo

Motivating Questions

● How can we define things that work like any sequence without having to

explicitly create these sequences?

○ The two implementations we will look at today are iterators and

generators

● Why would we want to do this?

Iterators

● Classes define what it means to iterate over them
● In order to do this, the class must define an iterator

● Iterator: A special object that handles logic for iterating over another
object

● An object can be its own iterator

Iterators

● In order to be iterable, a class must implement the __iter__(self)
method
○ This method returns an iterator object
○ Iterator can be self

● An iterator must implement the __next__(self) method
● When doing a for loop over a sequence, python implicitly gets the iterator

of the sequence and repeatedly calls next on it.

__next__(self)

● Accessed via the next method
● Returns the next element in the iteration

○ Must keep track of where it is in the sequence

● Once there are no more items left in the sequence, raise an exception:
○ raise StopIteration

● We’ll learn more about exceptions later. They’re like a special kind of
return.

Demo

Generators

● Generator functions use iteration (for loops, while loops) and the yield

keyword

● Generators functions have no return statement, but they don’t return None

● They implicitly return a generator object

● Generator objects are actually just iterators

Generators

● Generators can often be easier to implement than iterators

● Example:

○ Enumerate pairs of elements in a sequence, s

○ How would you implement an iterator that outputs these pairs?

Generators

● We can do this vary naturally using a generator function

Demo

What is the point?

● Iterators and generators let us capture potentially vast amounts of data
without computing them right away
○ range(1,000,000,000,000) gives us one object, not a list of a trillion numbers!

● When we need the numbers, we can ask for them on demand - a concept
called lazy evaluation

● Big implications for big data

Indexing

● There is another way an object can behave like a sequence: indexing
○ Using square brackets “[]” to access specific items in an object

● Defined by special method: __getitem__(self, i)
○ Method returns the item at a given index

● We (the makers of the class) get to decide what an index represents
○ Sequences: The item at a position in the sequence
○ Dictionaries: The value associated with a given key
○ Arrays: Index is a tuple representing the coordinate of the item

Indexing

● We are also responsible for deciding when an index is not valid for an
object
○ raise IndexError

Demo

Magic methods

● Surrounded by double underscores
○ __getitem__, __repr__, __str__, __next__, __iter__

● Define behavior for special operators
○ len(x) → you are implicitly calling the __len__() method
○ x[5] → you are implicitly calling the __getitem__() method
○ list1 + list2 → you are implicitly calling the __add__() method

Magic methods

● Magic methods allow us to…
○ give meaning to operators (+, -, <, ==) …
○ so that we can use our own classes (Tree, VendingMachine) …
○ just like we use built-in types (lists, integers)

● Want to compare two Trees using ==?
○ Make a __eq__(self, other) method in your Tree class

● Want to multiply VendingMachines together using *?
○ Make a __mul__(self, other) method in your VendingMachine class

Magic methods

● Want to create your own iterators that can be used in a for loop?
○ Implement the __iter__() and __next__() methods
○ __iter__(self) should return an iterator
○ __next__(self) gets the next value in the iteration + updates the current

position

