
Exceptions  
&  

a Taste of Declarative Programming 
in SQL 

David E. Culler 
 CS8 – Computational Structures in Data Science 

http://inst.eecs.berkeley.edu/~cs88 
 

Lecture 12 
April 18, 2016 

Computational Concepts Toolbox 
•  Data type: values, literals, 

operations,  
•  Expressions, Call 

expression 
•  Variables 
•  Assignment Statement 
•  Sequences: tuple, list 
•  Dictionaries 

•  Data structures 
•  Tuple assignment 
•  Function Definition 

Statement 
•  Conditional Statement 
•  Iteration: list comp, for, 

while 
•  Lambda function expr. 

•  Higher Order Functions 
–  as Values, Args, Results 

•  Higher order function 
patterns 

– Map, Filter, Reduce 
–  Function factories 

•  Recursion 
–  Linear, Tail, Tree 

•  Abstract Data Types 
•  Mutation 
•  Object Oriented 

Programming 
•  Classes 
•  Iterators and Generators 

4/18/16 UCB CS88 Sp16 L11 2 

Today: Exception (read 4.3) 
•  Mechanism in a programming language to 

declare and respond to “exceptional conditions” 
–  enable non-local cntinuations of control 

•  Often used to handle error conditions 
–  Unhandled exceptions will cause python to halt and print a 

stack trace 
–  You already saw a non-error exception – end of iterator 

•  Exceptions can be handled by the program 
instead 
– try, except, raise statements 

•  Exceptions are objects! 
–  They have classes with constructors 

4/18/16 UCB CS88 Sp16 L11 3 

Handling Errors 
•  Function receives arguments of improper type? 
•  Resource, e.g., file, is not available 
•  Network connection is lost or times out? 

4/18/16 UCB CS88 Sp16 L11 4 



Example exceptions 

•  Unhandled, thrown back to the top level 
interpreter 

•  Or halt the python program 
4/18/16 UCB CS88 Sp16 L11 5 

>>> 3/0
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> str.lower(1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: descriptor 'lower' requires a 'str' object 
but received a 'int'
>>> ""[2]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: string index out of range
>>> 

Functions 
•  Q: What is a function supposed to do? 
•  A: One thing well 
•  Q: What should it do when it is passed 

arguments that don’t make sense? 
 

4/18/16 UCB CS88 Sp16 L11 6 

>>> def divides(x, y):
...     return y%x == 0
... 
>>> divides(0, 5)
???

>>> def get(data, selector):
...     return data[selector]
... 
>>> get({'a': 34, 'cat':'9 lives'}, 'dog’) 

????

Exceptional exit from functions 

•  Function doesn’t “return” but instead execution 
is thrown out of the function 

4/18/16 UCB CS88 Sp16 L11 7 

>>> def divides(x, y):
...     return y%x == 0
... 
>>> divides(0, 5)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 2, in divides
ZeroDivisionError: integer division or modulo by zero
>>> def get(data, selector):
...     return data[selector]
... 
>>> get({'a': 34, 'cat':'9 lives'}, 'dog')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 2, in get
KeyError: 'dog'
>>> 

Continue out of multiple calls deep 

•  Stack unwinds until exception is handled or top 

4/18/16 UCB CS88 Sp16 L11 8 



Types of exceptions 
•  TypeError -- A function was passed the wrong 

number/type of argument 
•  NameError -- A name wasn't found 
•  KeyError -- A key wasn't found in a dictionary 
•  RuntimeError -- Catch-all for troubles during 

interpretation 
•  . . . 

4/18/16 UCB CS88 Sp16 L11 9 

Flow of control stops at the exception 
•  And is ‘thrown back’ to wherever it is caught 

4/18/16 UCB CS88 Sp16 L11 10 

Assert Statements 
•  Allow you to make assertions about 

assumptions that your code relies on 
–  Use them liberally! 
–  Incoming data is dirty till you’ve washed it 

•  Raise an exception of type AssertionError
•  Ignored in optimize flag: python3 –O … 

–  Governed by bool __debug__

4/18/16 UCB CS88 Sp16 L11 11 

assert <assertion expression>, <string for failed>

def divides(x, y):
    assert x != 0, ”Denominator must be non-zero”
    return y%x == 0

Handling Errors – try / except

•  Wrap your code in try – except statements 

•  Execution rule 
–  <try suite> is executed first 
–  If during this an exception is raised and not handled otherwise 
–  And if the exception inherits from <exception class> 
–  Then <except suite> is executed with <name> bound to the 

exception 

•  Control jumps to the except suite of the most 
recent try that handles the exception 

4/18/16 UCB CS88 Sp16 L11 12 

try:
    <try suite>
except <exception class> as <name>:
    <except suite>
... # continue here if <try suite> succeeds w/o exception



Demo 

4/18/16 UCB CS88 Sp16 L11 13 

Raise statement 
•  Exception are raised with a raise statement\ 

       raise <exception>

•  <expression> must evaluate to a subclass of 
BaseException or an instance of one 

•  Exceptions are constructed like any other object 
        TypeError(‘Bad argument’)

4/18/16 UCB CS88 Sp16 L11 14 

Exceptions are Classes 

4/18/16 UCB CS88 Sp16 L11 15 

class NoiseyException(Exception):
    def __init__(self, stuff):
        print("Bad stuff happened", stuff)

try:
    return fun(x)
except:
    raise NoiseyException((fun, x))

Demo 

4/18/16 UCB CS88 Sp16 L11 16 



Part II – Intro to Declarative Programming 

4/18/16 UCB CS88 Sp16 L11 17 

Data 8 Tables 

•  A single, simple, powerful data structure for all 
•  Inspired by Excel, SQL, R, Pandas, Numpy, … 

DSed @ UCB 18 

ordered collection of labeled columns of anything 

label 

values 

Numpy array T[‘label’] 

dict, record,tuple 

select, where, take, drop, group 

join 

stats, bin 
sample 
pivot, 
pivot_bin 

split 

3/29/16 

Database Management Systems 
•  DBMS are persistent tables with powerful relational 

operators 
–  Important, heavily used, interesting ! 

•  A table is a collection of records, which are rows that 
have a value for each column

•  Structure Query Language (SQL) is a declarative 
programming language describing operations on tables 

4/18/16 UCB CS88 Sp16 L11 19 

Name Latitude Longitude 
Berkeley 38 122 

Cambridge 42 71 

Minneapolis 45 93 
table has 
columns 
and rows 

row has a 
value for 
each column 

column has 
a name and 
a type 

SQL 
•  A declarative language 

–  Described what to compute 
–  Imperative languages, like python, describe how to compute it 
–  Query processor (interpreter) chooses which of many equivalent 

query plans to execute to perform the SQL statements 

•  ANSI and ISO standard, but many variants 
•  select statement creates a new table, either from 

scratch or by projecting a table 
•  create table statement gives a global name to a 

table 
•  Lots of other statements 

–  analyze, delete, explain, insert, replace, update, …

•  The action is in select 

4/18/16 UCB CS88 Sp16 L11 20 



SQL example 
•  SQL statements create tables 

–  Give it a try with sqlite3 or http://kripken.github.io/sql.js/GUI/ 
–  Each statement ends with ‘;’ 

4/18/16 UCB CS88 Sp16 L11 21 

culler$ sqlite3
SQLite version 3.9.2 2015-11-02 18:31:45
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.
sqlite> select 38 as latitude, 122 as longitude, "Berkeley" as 
name;
38|122|Berkeley
sqlite> 

select

•  Comma-separated list of column descriptions 
•  Column description is an expression, optionally 

followed by as and a column name 

•  Selecting literals creates a one-row table 
•  union of select statements is a table containing 

the union of the rows 

4/18/16 UCB CS88 Sp16 L11 22 

select 38 as latitude, 122 as longitude, "Berkeley" as name union 
select 42,             71,               "Cambridge" union
select 45,             93,               "Minneapolis";

select [expression] as [name], [expression] as [name]; . . .  

Latitude Longitude Name 
38 122 Berkeley 

42 71 Cambridge 

45 93 Minneapolis 

SQL: creating a named table 

4/18/16 UCB CS88 Sp16 L11 23 

Latitude Longitude Name 
38 122 Berkeley 

42 71 Cambridge 

45 93 Minneapolis 

cities: 

create table cities as
 select 38 as latitude, 122 as longitude, "Berkeley" as name union
 select 42,             71,               "Cambridge" union
 select 45,             93,               "Minneapolis”;

create table

•  SQL often used interactively 
–  Result of select displayed to the user, but not stored 

•  Create table statement gives the result a name 
–  Like a variable, but for a permanent object 

4/18/16 UCB CS88 Sp16 L11 24 

create table [name] as [select statement]; 



SQL: using named tables - from

4/18/16 UCB CS88 Sp16 L11 25 

create table cities as
 select 38 as latitude, 122 as longitude, "Berkeley" as name union
 select 42,             71,               "Cambridge" union
 select 45,             93,               "Minneapolis";

select "west coast" as region, name from cities where longitude 
>= 115 union
select "other", name from cities where longitude < 115

cities: 

Region Name 
west coast Berkeley 

other Cambridge 

other Minneapolis 

Latitude Longitude Name 
38 122 Berkeley 

42 71 Cambridge 

45 93 Minneapolis 

Projecting existing tables 
•  Input table specified by from clause 
•  Subset of rows selected using a where clause 
•  Ordering of the selected rows declared using an 
order by clause 

4/18/16 UCB CS88 Sp16 L11 26 

select [columns] from [table] where [condition] order by [order] ; 

select * from cities where longitude > 115 order by name;

Name Latitude Longitude 
Cambridge 42 71 

Minneapolis 45 93 

Joining tables 
•  Two tables are joined by a comma to yield all 

combinations of a row from each 

4/18/16 UCB CS88 Sp16 L11 27 

create table cities as
 select 38 as latitude, 122 as longitude, "Berkeley" as name union
 select 42,             71,               "Cambridge" union
 select 45,             93,               "Minneapolis";

create table climates as
 select "Berkeley" as city, "warm" as climate union
 select "Cambridge" as city, "cold" as climate;

select * from cities, climates

Join / Where 

4/18/16 UCB CS88 Sp16 L11 28 

create table cities as
 select 38 as latitude, 122 as longitude, "Berkeley" as name union
 select 42,             71,               "Cambridge" union
 select 45,             93,               "Minneapolis";

create table climates as
 select "Berkeley" as city, "warm" as climate union
 select "Cambridge" as city, "cold" as climate;

select name, climate, latitude, longitude from cities, climates 
where name = city;



Aggregation and grouping 
•  Reduction operators can be applied over 

groupings of rows 

4/18/16 UCB CS88 Sp16 L11 29 

create table cities as
 select 38 as latitude, 122 as longitude, "Berkeley" as name union
 select 42,             71,               "Cambridge" union
 select 45,             93,               "Minneapolis";

create table climates as
 select "Berkeley" as city, "warm" as climate union
 select "Cambridge" as city, "cold" as climate union
 select "Minneapolis" as city, "cold" as climate;

select climate, min(latitude) from cities, climates where name = 
city group by climate;

Summary 
•  Exceptions provide a way to handle unexpected 

cases and errors 
•  Transfers control to enclosing handler of 

matching type 
–  assert, raise <expression> , try: … except <type> as <name> 

•  SQL a declarative programming language on 
relational tables  

–  largely familiar to you from data8 
–  create, select, where, order, group by, join 

•  More in lab today 

4/18/16 UCB CS88 Sp16 L11 30 


