Computational Structures in Data
Science

Lecture 6:
ceiatisdans - Evironment Diagrams,
Recursion Review,

Midterm Review

March 4, 2019 http://inst.eecs.berkeley.edu/~cs88

R ’
W
5

Recursion Key concepts — by example

1. Test for simple “base” case 2. Solution in simple “base” case

N\ i

def suﬁfo_squares) 2
if n < 1:
return 0
else:
return sgm_of_squares(n-l) #\n**z

N\ N

3. Assume recusive solution
to simpler problem

4. Transform soln of simpler
problem into full soln

UCB CS88 Spl9 L5

How does it work?

* Each recursive call gets its own local variables
— Just like any other function call

 Computes its result (possibly using additional
calls)
— Just like any other function call

* Returns its result and returns control to its caller
— Just like any other function call

* The function that is called happens to be itself

— Called on a simpler problem
— Eventually bottoms out on the simple base case

* Reason about correctness “by induction”

— Solve a base case
— Assuming a solution to a smaller problem, extend it

UCB CS88 Spl9 L5

Local variables

_—
[X]

def sum_of_squares{ﬁj
n_squared = n**2
if n < 1:
return 0O
else:
return n_squared

sum_ of squares(n-1)

« Each call has its own “frame” of local variables

* What about globals?

* Let’s see the environment diagrams

https://goo.gl/CiFaUJ

UCB CS88 Spl9 L5

Environments Example

Python 3.3 Frames Objects

def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2 /_)

if n ==
return 1
else:
return n_squared + sum_of_ squares(n-1)

sum_of_squares

—p sum_of_squares(3)

Edit code

<< First <Back Step 2 of 17 Forward > Last >>

Python 3.3 Frames Objects
= def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]

n_squared = n**2
. sum_of_squares
if n==

return 1
else: fl: sum_of_squares [parent=Global]

return n_squared + sum_of_squares(n-1) n 3

sum_of squares(3)

Edit code

<<First | <Back Step 3 of 17 | Forward > Last >>

pythontutor.com

UCB CS88 Spl9 L6

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

<<First <Back Step 50f 17 | Forward > Last >>

Python 3.3

def sum _of squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of squares(3)

Frames

Global frame

sum_of_squares

fl: sum_of_squares [parent=Global]

n 3

n_squared 9

Frames

Global frame

sum_of_squares

fl: sum_of_squares [parent=Globall
n 3

n_squared 9

UCB CS88 Spl9 L6

Objects

func sum_of_squares(n) [parent=Global]

Objects

func sum_of_squares(n) [parent=Global]

Environments Example

Python 3.3

-—) def sum_of squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_ squares(n-1)

sum_of_squares(3)

Edit code

Python 3.3

def sum_of_squares(n):
n_squared = n**2
-—) if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of _squares(3)

Edit code

<< First <Back Step 9 of 17 | Forward > Last >>

Global frame

fl: sum_of_squares

f2: sum_of_squares

Global frame

fl: sum_of_squares

f2: sum_of_squares

UCB CS88 Spl9 L6

Frames

sum_of_squares

[parent=Global]
n 3

n_squared |9

[parent=Globall
n 2

Frames

sum_of_squares

[parent=Global]
n 3

n_squared |9

[parent=Global]
n 2

n_squared 4

Objects

func sum_of_squares(n) [parent=Globall

Objects

func sum_of_squares(n) [parent=Global]

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
- return n_squared + sum_of_squares(n-1)

sum_of squares(3)

Edit code

<< First <Back Step 10 of 17 | Forward > Last >>

Python 3.3

- def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of squares(n-1)

sum_of_squares(3)

Edit code

<< First <Back Step 11 of 17 | Forward > Last >>

that has just executed
- line to execute

Frames

Global frame

sum_of_squares

fl: sum_of_squares [parent=Globall
n |3

n_squared |9

f2: sum_of_squares [parent=Globall
n 2

n_squared 4

Frames

Global frame

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]

n 1

UCB CS88 Spl9 L6

Objects

func sum_of_squares(n) [parent=Global]

Objects

func sum_of_squares(n) [parent=Globall]

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
- if n==
return 1
else:
return n_squared + sum_of squares(n-1)

sum_of squares(3)

Edit code

<< First <Back Step 13 of 17 | Forward > Last >>

that has just executed
t line to execute

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
L return 1
else:
return n_squared + sum_of squares(n-1)

sum_of squares(3)

Edit code

<< First <Back Step 14 of 17 | Forward > Last >>

that has just executed
t line to execute

Frames Objects

Global frame func sum_of_squares(n)

sum_of_squares

fl: sum_of_squares [parent=Globall]
n 3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Globall]
n 1

n_squared |1

Frames Objects

Global frame func sum_of_squares(n)

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]
n 1

n_squared |1

[parent=Globall]

[parent=Global]

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_ squares(3)

Edit code

<< First <Back Step 15 of 17 | Forward > Last >>

e that has just executed
xt line to execute

Frames

Global frame

sum_of_squares

fl: sum_of_squares [parent=Global]
n 3

n_squared 9

f2: sum_of_squares [parent=Global]
n 2

n_squared |4

f3: sum_of_squares [parent=Globall
n 1
n_squared 1

Return 1
value

UCB CS88 Spl9 L6

Objects

func sum_of_squares(n)

[parent=Globall

Environments Example

Python 3.3

def sum_of squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of squares(n-1)

sum_of squares(3)

Edit code

<< First <Back Step 16 of 17 | Forward > Last >>

 that has just executed
t line to execute

Frames Objects

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

fl: sum_of_squares [parent=Globall
n 3

n_squared |9

f2: sum_of_squares [parent=Globall
n 2
n_squared 4

Return 5
value

f3: sum_of_squares [parent=Global]

n 1

n_squared |1
Return
value

UCB CS88 Spl9 L6

Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2
. sum_of_squares
if n ==
return 1
else: fl: sum_of_squares [parent=Globall
= return n_squared + sum_of squares(n-1) n '3
n_squared 9
sum_of_squares(3)
Return 14
Edit code value
O f2: sum_of_squares [parent=Global]
<< First <Back Step 17 of 17 | Forward > Last >> n |2
: that has just executed n_squared |4
«t line to execute Return
value

f3: sum_of_squares [parent=Global]
n (1

n_squared |1

Return 1
value

UCB CS88 Spl9 L6

How much 7?7?77

* Time is required to compute
sum of squares (n)? Linear
— Recursively? proportional to n
— lteratively ? cn for some ¢

* Space is required to compute
sum_of squares(n)?
— Recursively?
— lteratively ?

* Count the frames...
* Recursive is linear, iterative is constant!

UCB CS88 Spl9 L6

Tail Recursion

* All the work happens on the way down the

recursion

* On the way back up, just return

14

def sum up squares (i, n, accum):
nnngum the squares from i to n in incr. order""®

if 1 > n:

else: _

>>> gum up_squares(1l,3,0)

3/04/19

UCB CS88 Spl9 L6

19

Tree Recursion

* Break the problem into multiple smaller sub-
problems, and Solve them recursively

def split(x, s):
return [1i for i in s if 1 <= x], [1 for 1 in s if 1 > x]

def gsort(s):

"n"rSort a sequence - split it by the first element,
sort both parts and put them back together."””
if not s:
return []
else:
pivot = first(s)

(
lessor, more = split(pivot, rest(s))
return gsort(lessor) + [pivot] + gsort (more)

>>> gsort([3,3,1,4,5,4,3,2,1,17])
(., 1, 2, 3, 3, 3, 4, 4, 5, 17]

UCB CS88 Spl9 L6

QuickSort Example

(3)3, 1, 4, 5, 4, 3, 2, 1, 17]

[3,)1, 3, 2, 1] @5, 4, 17]
(1) 3, 2, 1]] (14]) (5,) 17]
(1] @) 2] 1| 1] 1| | (17)
| (2] o [4) 0|0
11| oo 5, 17)
[2, 3] (4, 4, 17]
(1, 1, 2, 3]
(1, 1, 2, 3, 3]

UCB CS88 Spl9 L6

Tree Recursion with HOF

def gsort(s):
"nngort a sequence - split it by the first element,
sort both parts and put them back together.""”

i1f not s:
return []
else:
pivot = first(s)

lessor, more = split_ fun(leq maker (pivot), rest(s))
return gsort(lessor) + [pivot] + gsort (more)

>>> gsort(I[3,3,1,4,5,4,3,2,1,17])
(, 1, 2, 3, 3, 3, 4, 4, 5, 17]

UCB CS88 Spl9 L6

Computational Concepts Toolbox

* Data type: values, literals, * lteration:
operations, — data-driven (list
— e.g., int, float, string comprehension)
* Expressions, Call — control-driven (for
expression statement)
* Variables — while statement
* Assignment Statement » Higher Order Functions
* Sequences: tuple, list — Functions as Values
— indexing — Functions with functions as
* Data structures argument

] — Assignment of function
* Tuple assignment values

* Call Expressions Recursion

iz,ﬁFunction Definition Environment Diagrams
259 Statement

Conditional Statement

UCB CS88 Spl9 L6

Answers for the Wandering Mind

The computer choses a random element x of the list
generated by range(0,n). What is the smallest
amount of iteration/recursion steps the best
algorithm needs to guess x?

log, n

How would the algorithm look like?

Guess the binary digits of x starting with the highest
significant digit. This is, ask questions of the form
“smaller than 2™'?" (yes => 0...),

“smaller than 2"2?" (no =>01...),

“smaller than 2m2+2n-37?7 .

This method is also called: binary search
Oiiantiim nhvegire: AlIA? BELSPRHA Inn. n nlleccac

