
3/9/20

1

Computational Structures in Data
Science

Lecture 12:
Mutability

http://inst.eecs.berkeley.edu/~cs88March 9, 2020

UC Berkeley EECS
Lecturer Michael Ball

1

Announcements

• Maps project due Wed 4/1
• Midterm scores out tomorrow
• Watch Piazza for announcements about

labs and office hours
• We will not be tracking participation

today, but hope you still check in

2

Computational Concepts Toolbox
• Data type: values, literals,

operations,
• Expressions, Call

expression
• Variables
• Assignment Statement
• Sequences: tuple, list
• Dictionaries
• Data structures
• Tuple assignment
• Function Definition

Statement
• Conditional Statement
• Iteration: list comp, for,

while
• Lambda function expr.

• Higher Order Functions
– Functions as Values
– Functions with functions as

argument
– Assignment of function

values
• Higher order function

patterns
– Map, Filter, Reduce

• Function factories – create
and return functions

• Recursion
– Linear, Tail, Tree

• Abstract Data
Types: Mutability

UCB CS88 Fa19 L08

3

Review: Creating an Abtract Data Type
• Operations

– Express the behavior of objects, invariants, etc
– Implemented (abstractly) in terms of Constructors and

Selectors for the object
• Representation

– Constructors & Selectors
– Implement the structure of the object

• An abstraction barrier violation occurs when a
part of the program that can use the higher level
functions uses lower level ones instead

– At either layer of abstraction
• Abstraction barriers make programs easier to get

right, maintain, and modify
– Few changes when representation changes

UCB CS88 Fa19 L08

Review: Creating an Abtract Data Type
• Operations

– Express the behavior of objects, invariants, etc
– Implemented (abstractly) in terms of Constructors and

Selectors for the object

• Representation
– Constructors & Selectors
– Implement the structure of the object

• An abstraction barrier violation occurs when a
part of the program that can use the higher level
functions uses lower level ones instead
– At either layer of abstraction

• Abstraction barriers make programs easier to get
right, maintain, and modify
– Few changes when representation changes

UCB CS88 Fa19 L08

4

Dictionaries – by example
• Constructors:

– dict(hi=32, lo=17)
– dict([('hi',212),('lo',32),(17,3)])
– {'x':1, 'y':2, 3:4}
– {wd:len(wd) for wd in "The quick brown fox".split()}

• Selectors:
– water[‘lo’]
– <dict>.keys(), .items(), .values()
– <dict>.get(key [, default])

• Operations:
– in, not in, len, min, max
– ‘lo’ in water

• Mutators
– water[‘lo’] = 33

UCB CS88 Fa19 L08

5

Objects
• An Abstract Data Type consist of data and

behavior bundled together to abstract a view on
the data

• An object is a concrete instance of an abstract
data type.

• Objects can have state
– mutable vs immutable

• Next lectures: Object-oriented programming
– A methodology for organizing large(er) programs
– A core component of the Python language

• In Python, every value is an object
– All objects have attributes
– Manipulation happens through method

UCB CS88 Fa19 L08

6

http://inst.eecs.berkeley.edu/~cs88

3/9/20

2

Mutability
• Immutable – the value of the object cannot be

changed
– integers, floats, booleans
– strings, tuples

• Mutable – the value of the object can …
– Lists
– Dictionaries

>>> alist = [1,2,3,4]
>>> alist
[1, 2, 3, 4]
>>> alist[2]
3
>>> alist[2] = 'elephant'
>>> alist
[1, 2, 'elephant', 4]

>>> adict = {'a':1, 'b':2}
>>> adict
{'b': 2, 'a': 1}
>>> adict['b']
2
>>> adict['b'] = 42
>>> adict['c'] = 'elephant'
>>> adict
{'b': 42, 'c': 'elephant', 'a':
1}

UCB CS88 Fa19 L08

7

From value to storage …
• A variable assigned a compound value (object) is

a reference to that object.
• Mutable object can be changed but the

variable(s) still refer to it
x = [1, 2, 3]
y = 6

•x:
y: 6

…

frame 1 • 2 • 3 •6

x[1] = y
x[1]

UCB CS88 Fa19 L08

8

Mutation makes sharing visible

UCB CS88 Fa19 L08

9

Copies, ‘is’ and ‘==‘
>>> alist = [1, 2, 3, 4]
>>> alist == [1, 2, 3, 4] # Equal values?
True
>>> alist is [1, 2, 3, 4] # same object?
False
>>> blist = alist # assignment refers
>>> alist is blist # to same object
True
>>> blist = list(alist) # type constructors copy
>>> blist is alist
False
>>> blist = alist[:] # so does slicing
>>> blist is alist
False
>>> blist
[1, 2, 3, 4]
>>>

UCB CS88 Fa19 L08

10

Mutating Input Data

• Functions can mutate objects passed in as an
argument

• Declaring a new variable with the same name as
an argument only exists within the scope of our
function

• BUT, we can still modify the object passed in,
even though it was created in some other frame
or environment.

• Python Tutor

11

Creating mutating ‘functions’
• Pure functions have referential transparency

• c = greet() + name() is “referentially transparent” if we
can replace that expression with the value, maybe that’s
“Hello, CS 88”

• Result value depends only on the inputs
– Same inputs, same result value

• Functions that use global variables are not pure
• They can be “mutating” >>> counter = -1

>>> def count_fun():
... global counter
... counter += 1
... return counter
...
>>> count_fun()
0
>>> count_fun()
1

UCB CS88 Fa19 L08

12

http://pythontutor.com/composingprograms.html

3/9/20

3

Creating mutating ‘functions’

>>> counter = -1
>>> def count_fun():
... global counter
... counter += 1
... return counter
...
>>> count_fun()
0
>>> count_fun()
1

>>> def make_counter():
... counter = -1
... def counts():
... nonlocal counter
... counter +=1
... return counter
... return counts
...
>>> count_fun = make_counter()
>>> count_fun()
0
>>> count_fun()
1
>>> nother_one = make_counter()
>>> nother_one()
0
>>> count_fun()
2

How do I make a second
counter?

UCB CS88 Fa19 L08

13

Are these ‘mutations’ of seq?

def sum(seq):
psum = 0
for x in seq:

psum = psum + x
return psum

def reverse(seq):
rev = []
for x in seq:

rev = [x] + rev
return rev A) Yes, both

B) Only sum
C) Only reverse
D) None of themSolution:

D) No change of seq

UCB CS88 Fa19 L08

14

