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Solutions for the Wandering Mind
Can you write a quine that mutates on self-replication?
Yes!

Give an example.
A Fibonacci-quine outputs a modification of the source by 
the following rules: 
1) The initial source should contain 2. 
2) When run, output the source, but only the specific number 
(here 2) changed to the next number of the Fibonacci 
sequence. For example, 3. Same goes for the output, and 
the output of the output, etc. 

s='s=%r;print(s%%(s,round(%s*(1+5**.5)/2)))';
print(s%(s,round(2*(1+5**.5)/2)))
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Why?
• Runtime Analysis:

– How long will my program take to run? 
– Why can’t we just use a clock?

• Data Structures
– OOP helps us organize our programs
– Data Structures help us organize our data!
– You already know lists and dictionaries!
– We’ll see two new ones today

• Enjoy this stuff? Take 61B!
• Find it challenging? Don’t worry! It’s a different 

way of thinking.
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Efficiency

How long is this code going to take to 
run?
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Is this code fast?

• Most code doesn’t really need to be 
fast! Computers, even your phones 
are already amazingly fast!
• Sometimes…it does matter!
–Lots of data
–Small hardware
–Complex processes

• We can’t just use a clock
–Every computer is different? What’s the 

benchmark?
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• Time w/stopwatch, 
but…
– Different computers may 

have different runtimes.  L
– Same computer may have 

different runtime on the 
same input.  L

– Need to implement the 
algorithm first to run it.  L

• Solution: Count the 
number of “steps” 
involved, not time!
– Each operation = 1 step
– If we say “running time”, 

we’ll mean # of steps, not 
time!

Runtime analysis problem & solution



• Definition
– Input size: the # of 

things in the input. 
– E.g., # of things in a 

list
– Running time as a 

function of input size
–Measures efficiency

• Important!
– In CS88 we won’t 

care about the 
efficiency of your 
solutions!

–…in CS61B we will

CS88

CS61B

CS61C

Runtime: input size & efficiency



• Could use avg case
– Average running time 

over a vast # of inputs
• Instead: use worst case

– Consider running time as 
input grows

• Why?
– Nice to know most time 

we’d ever spend
–Worst case happens 

often
– Avg is often ~ worst

• Often called “Big O”
–We use ”Omega” denote 

runtime

Runtime analysis : worst or avg case?



• Instead of an exact 
number of operations 
we’ll use abstraction
– Want order of growth, 

or dominant term

• In CS88 we’ll consider
– Constant
– Logarithmic
– Linear
– Quadratic
– Exponential

• E.g. 10 n2 + 4 log n + n
– …is quadratic

Runtime analysis: Final abstraction

Graph of order of growth curves 
on log-log plot

Constant

Logarithmic

Linear

QuadraticCubicExponential



• Input
–Unsorted list of 

students L
– Find student S

• Output
– True if S is in L, else 

False
• Pseudocode

Algorithm
–Go through one by one, 

checking for match.
– If match, true
– If exhausted L and 

didn’t find S, false

Example: Finding a student (by ID)

• Worst-case running 
time as function of 
the size of L?
1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential



• Input
–Sorted list of students L
– Find student S

• Output : same
• Pseudocode Algorithm
–Start in middle
– If match, report true
– If exhausted, throw 

away half of L and 
check again in the 
middle of remaining 
part of L
– If nobody left, report 

false

Example: Finding a student (by ID)

• Worst-case running 
time as function of 
the size of L?
1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential



Computational Patterns
• If the number of steps to solve a problem is 

always the same → Constant time: O(1)
• If the number of steps increases similarly for 

each larger input → Linear Time: O(n)
– Most commonly: for each item

• If the number of steps increases by some a 
factor of the input → Quadradic Time: O(n2)
– Most commonly: Nested for Loops

• Two harder cases:
– Logarithmic Time: O(log n)

» We can double our input with only one more level of work
» Dividing data in “half” (or thirds, etc)

– Exponential Time: O(2n)
» For each bigger input we have 2x the amount of work!
» Certain forms of Tree Recursion
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Comparing Fibonacci
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def iter_fib(n):
x, y = 0, 1
for _ in range(n):

x, y = y, x+y
return x

def fib(n): # Recursive
if n < 2:

return n
return fib(n - 1) + fib(n - 2)



Tree Recursion
• Fib(4) → 9 Calls
• Fib(5) → 16 Calls
• Fib(6) → 26 Calls
• Fib(7) → 43 Calls
• Fib(20) → 
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What next?
• Understanding algorithmic complexity helps us 

know whether something is possible to solve.
• Gives us a formal reason for understanding why 

a program might be slow
• This is only the beginning:

– We’ve only talked about time complexity, but there is space 
complexity. 

– In other words: How much memory does my program 
require?

– Often times you can trade time for space and vice-versa
– Tools like “caching” and “memorization” do this. 

• If you think this is cool take CS61B!
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Thoughts for the Wandering Mind

Consider the following simple Python code:
x = input("Enter a number between 0 and 1:")
for i in range(10):

x=-x**2+4*x
print x

163/18/19 UCB CS88 Sp19 L07

Plot the function implemented by the code.
- Could you predict using sampling (e.g., interpolate 

from the results of inputs 0, 0.25, 0.5, 0.75, 1)?
- Could you predict using calculus (e.g., using the 

derivative of f(x)=-x2+4x)?
- Could a neural network learn the function, given  

enough (input, output) tuples as training data? 


