
Computational Structures in Data
Science

Lecture #18:
Efficiency

UC Berkeley EECS
Adj. Ass. Prof.

Gerald Friedland

http://inst.eecs.berkeley.edu/~cs88April 3rd, 2020

http://inst.eecs.berkeley.edu/~cs88

Solutions for the Wandering Mind
Can you write a quine that mutates on self-replication?
Yes!

Give an example.
A Fibonacci-quine outputs a modification of the source by
the following rules:
1) The initial source should contain 2.
2) When run, output the source, but only the specific number
(here 2) changed to the next number of the Fibonacci
sequence. For example, 3. Same goes for the output, and
the output of the output, etc.

s='s=%r;print(s%%(s,round(%s*(1+5**.5)/2)))';
print(s%(s,round(2*(1+5**.5)/2)))

204/08/2019 UCB CS88 Sp19 L10

Why?
• Runtime Analysis:

– How long will my program take to run?
– Why can’t we just use a clock?

• Data Structures
– OOP helps us organize our programs
– Data Structures help us organize our data!
– You already know lists and dictionaries!
– We’ll see two new ones today

• Enjoy this stuff? Take 61B!
• Find it challenging? Don’t worry! It’s a different

way of thinking.

11/12/19 UCB CS88 Fa19 L10 3

Efficiency

How long is this code going to take to
run?

11/12/19 UCB CS88 Fa19 L10 4

Is this code fast?

• Most code doesn’t really need to be
fast! Computers, even your phones
are already amazingly fast!
• Sometimes…it does matter!
–Lots of data
–Small hardware
–Complex processes

• We can’t just use a clock
–Every computer is different? What’s the

benchmark?

2/22/16 UCB CS88 Sp16 L4 5

2/22/16 UCB CS88 Sp16 L4 6

• Time w/stopwatch,
but…
– Different computers may

have different runtimes. L
– Same computer may have

different runtime on the
same input. L

– Need to implement the
algorithm first to run it. L

• Solution: Count the
number of “steps”
involved, not time!
– Each operation = 1 step
– If we say “running time”,

we’ll mean # of steps, not
time!

Runtime analysis problem & solution

• Definition
– Input size: the # of

things in the input.
– E.g., # of things in a

list
– Running time as a

function of input size
–Measures efficiency

• Important!
– In CS88 we won’t

care about the
efficiency of your
solutions!

–…in CS61B we will

CS88

CS61B

CS61C

Runtime: input size & efficiency

• Could use avg case
– Average running time

over a vast # of inputs
• Instead: use worst case

– Consider running time as
input grows

• Why?
– Nice to know most time

we’d ever spend
–Worst case happens

often
– Avg is often ~ worst

• Often called “Big O”
–We use ”Omega” denote

runtime

Runtime analysis : worst or avg case?

• Instead of an exact
number of operations
we’ll use abstraction
– Want order of growth,

or dominant term

• In CS88 we’ll consider
– Constant
– Logarithmic
– Linear
– Quadratic
– Exponential

• E.g. 10 n2 + 4 log n + n
– …is quadratic

Runtime analysis: Final abstraction

Graph of order of growth curves
on log-log plot

Constant

Logarithmic

Linear

QuadraticCubicExponential

• Input
–Unsorted list of

students L
– Find student S

• Output
– True if S is in L, else

False
• Pseudocode

Algorithm
–Go through one by one,

checking for match.
– If match, true
– If exhausted L and

didn’t find S, false

Example: Finding a student (by ID)

• Worst-case running
time as function of
the size of L?
1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential

• Input
–Sorted list of students L
– Find student S

• Output : same
• Pseudocode Algorithm
–Start in middle
– If match, report true
– If exhausted, throw

away half of L and
check again in the
middle of remaining
part of L
– If nobody left, report

false

Example: Finding a student (by ID)

• Worst-case running
time as function of
the size of L?
1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential

Computational Patterns
• If the number of steps to solve a problem is

always the same → Constant time: O(1)
• If the number of steps increases similarly for

each larger input → Linear Time: O(n)
– Most commonly: for each item

• If the number of steps increases by some a
factor of the input → Quadradic Time: O(n2)
– Most commonly: Nested for Loops

• Two harder cases:
– Logarithmic Time: O(log n)

» We can double our input with only one more level of work
» Dividing data in “half” (or thirds, etc)

– Exponential Time: O(2n)
» For each bigger input we have 2x the amount of work!
» Certain forms of Tree Recursion

12

Comparing Fibonacci

13

def iter_fib(n):
x, y = 0, 1
for _ in range(n):

x, y = y, x+y
return x

def fib(n): # Recursive
if n < 2:

return n
return fib(n - 1) + fib(n - 2)

Tree Recursion
• Fib(4) → 9 Calls
• Fib(5) → 16 Calls
• Fib(6) → 26 Calls
• Fib(7) → 43 Calls
• Fib(20) →

14

What next?
• Understanding algorithmic complexity helps us

know whether something is possible to solve.
• Gives us a formal reason for understanding why

a program might be slow
• This is only the beginning:

– We’ve only talked about time complexity, but there is space
complexity.

– In other words: How much memory does my program
require?

– Often times you can trade time for space and vice-versa
– Tools like “caching” and “memorization” do this.

• If you think this is cool take CS61B!

2/22/16 UCB CS88 Sp16 L4 15

Thoughts for the Wandering Mind

Consider the following simple Python code:
x = input("Enter a number between 0 and 1:")
for i in range(10):

x=-x**2+4*x
print x

163/18/19 UCB CS88 Sp19 L07

Plot the function implemented by the code.
- Could you predict using sampling (e.g., interpolate

from the results of inputs 0, 0.25, 0.5, 0.75, 1)?
- Could you predict using calculus (e.g., using the

derivative of f(x)=-x2+4x)?
- Could a neural network learn the function, given

enough (input, output) tuples as training data?

