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Announcements

• Labs:
– Practice questions are required starting lab 3, but like the rest based on effort.
– There will be 3 per lab, the rest are optional.

• Midterm: March 11, 7-9pm
– We will be using Zoom to proctor, details in a week or so.

» Basically, you'll need to record yourself w/ screensharing during the exam.

– Alternate time the following morning. 
• My OH, normally Wednesday 2-3pm
• Likely everyone will get off the waitlist soon!

– Dual enrolled in CS61A: We can optionally transfer early assignment scores.
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News: An AI “Publishes” and Op-Ed in the Guardian

• …with help from a UC Berkeley student!
• “A robot wrote this entire article. Are you scared yet, human?”
• This article was written by GPT-3, OpenAI’s language generator. GPT-3 is a 

cutting edge language model that uses machine learning to produce human 
like text. It takes in a prompt, and attempts to complete it.
• The prompts were written by the Guardian, and fed to GPT-3 by Liam Porr, a 

computer science undergraduate student at UC Berkeley. GPT-3 produced 
eight different outputs, or essays. […] we chose instead to pick the best parts 
of each, in order to capture the different styles and registers of the AI. 
Editing GPT-3’s op-ed was no different to editing a human op-ed. We cut 
lines and paragraphs, and rearranged the order of them in some places. 
Overall, it took less time to edit than many human op-eds.
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Higher Order Functions
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Learning Objectives

• Learn how to use and create higher order functions:
• Functions can be used as data
• Functions can accept a function as an argument
• Functions can return a new function
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Code is a Form of Data

• Numbers, Strings: All kinds of data
• Code is its own kind of data, too!
• Why?

– More expressive programs, a new kind of abstraction.
– ”Encapsulate” logic and data into neat packages.

• This will be one of the trickier concepts in CS88.
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What is a Higher Order Function?

• A function that takes in another function as an argument

• OR

• A function that returns a function as a result.
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An Interesting Example
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Environments & Higher Order Functions
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Example: compose

• Python Tutor:
http://pythontutor.com/composingprograms.html#code=d
ef%20square%28x%29%3A%0A%20%20%20%20return%20x%20*%2
0x%0A%20%20%20%20%0As%20%3D%20square%0Ax%20%3D%20s%2
83%29%0A%0Adef%20make_adder%28n%29%3A%0A%20%20%20%20
def%20adder%28k%29%3A%0A%20%20%20%20%20%20%20%2
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Environment Diagrams

• Organizational tools that help you understand code
• Terminology:

– Frame: keeps track of variable-to-value bindings, each function call has a frame
– Global Frame: global for short, the starting frame of all python programs, doesn’t 

correspond to a specific function
– Parent Frame: The frame of where a function is defined (default parent frame is 

global)
– Frame number: What we use to keep track of frames, f1, f2, f3, etc
– Variable vs Value: x = 1. x is the variable, 1 is the value
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Environment Diagrams Steps

1. Draw the global frame
2. When evaluating assignments (lines with single equal), always evaluate 

right side first
3. When you call a function MAKE A NEW FRAME!
4. When assigning a primitive expression (number, boolean, string) write the 

value in the box
5. When assigning anything else, draw an arrow to the value
6. When calling a function, name the frame with the intrinsic name – the 

name of the function that variable points to
7. The parent frame of a function is the frame in which it was defined in 

(default parent frame is global)
8. If the value isn’t in the current frame, search in the parent frame
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Environment Diagram Tips / Links

• NEVER EVER EVER draw an arrow from one variable to another.
• Source:
• http://markmiyashita.com/cs61a/environment_diagrams/rules_of_environmen

t_diagrams/
• http://albertwu.org/cs61a/notes/environments.html
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