UC Berkeley EECS
Lecturer
Michael Ball

UC Berkeley EECS
Adj. Ass. Prof.
Dr. Gerald Friedland

Computational Structures in Data Science

Recursion

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Announcements

« Maps is out

- Checkpoint 1is due tonight. It’s a few short functions

- No slip days for the check point, but slip days for the rest of the project.
« Midterm:

- Thursday 3/11

- Includes recursion (today and Friday)

bJE16S88 Sp1o Ls UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Computing In The News

Researchers at Education Reference Desk (EduRef), a resource for current
and prospective students, found that an artificial intelligence (Al) tool can
write a college term paper in three to 20 minutes and achieve a passing grade.
Humans, in contrast, took three days on average to complete the same
assignment. The researchers had a panel of professors grade anonymous
submissions to writing prompts from recent graduates and undergraduate-
level writers and Open Al's GPT-3, a deep learning language prediction model.
The professors gave GPT-3 an average grade of “C” in four subjects, and it
failed just one assignment. Said the researchers, “Even without being
augmented by human interference, GPT-3's assignments received more or less
the same feedback as the human writers.”

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

https://www.zdnet.com/article/ai-can-write-a-passing-college-paper-in-20-minutes/

Computational Structures in Data Science

Recursion

UC Berkeley EECS
Lecturer
Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Why Recursion?

 Recursive structures exist (sometimes hidden) in nature and therefore in data!

* I's mentally and sometimes computationally more efficient to process recursive
structures using recursion.

« Sometimes, the recursive definition is easier to understand or write, even if it is
computationally slower.

bJEg1ES88 Sp1g L UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Today: Recursion

re-cur-sion
Iri'karZHan/ ©

noun MATHEMATICS LINGUISTICS

the repeated application of a recursive procedure or definition.

. arecursive definition.
plural noun: recursions

re-cur-sive
/ri'karsiv/ ¥

adjective

characterized by recurrence or repetition, in particular.

+ MATHEMATICS LINGUISTICS
relating to or involving the repeated application of a rule, definition, or procedure to
successive results.

+ COMPUTING

relating to or involving a program or routine of which a part requires the application
of the whole, so that its explicit interpretation requires in general many successive
executions.

« Recursive function calls itself, directly or indirectly

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Demo: Vee

* run 11-recursion.py

« The file will open an interpreter.

« Use the following keys to play with the demo
- Space to draw
- C to Clear
- Up to add “vee” to the functions list

- Down to remove the “vee” functions from the list.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Demo: Countdown

def countdown(n):
if n == 0:
print('Blastoff!")
else:
print(n)
countdown(n - 1)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org 3

The Recursive Process

= Recursive solutions involve two major parts:

o Base case(s), the problem is simple enough to be solved directly
o Recursive case(s). A recursive case has three components:

= Divide the problem into one or more simpler or smaller parts
= Invoke the function (recursively) on each part, and
= Combine the solutions of the parts into a solution for the problem.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Computational Structures in Data Science

Recursion

UC Berkeley EECS
Lecturer
Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Learning Objectives

« Compare Recursion and Iteration to each other

- Translate some simple functions from one method to another

« \Write a recursive function

- Understand the base case and a recursive case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

For loop:

def sum(n):
s=0
for i in range(O,n+1):
S=s+1
return s

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

While loop:

def sum(n):
s=0
1=0
while i<n:
i=1+1
S=S+1
return s

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

Recursion:
def sum(n):
if n == 0:
return 0
return n+sum(n-1)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Cheating!
Sometimes it’s best to just use a formula! But that’s not always the point. ©

def sum(n):
return (n x (n + 1)) / 2

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

The Recursive Process

= Recursive solutions involve two major parts:

o Base case(s), the problem is simple enough to be solved directly
o Recursive case(s). A recursive case has three components:

= Divide the problem into one or more simpler or smaller parts
= Invoke the function (recursively) on each part, and
= Combine the solutions of the parts into a solution for the problem.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recall: Iteration

1. Initialize the “base” case of no iterations

]

def sum_of_sq es(n) . 2. Starting value

accum = 0

for 1 in range(l,n+1):
accum =_accum + %1

return accum

3. Ending value

4. New loop variable value

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recursion Key concepts - by example

1. Test for simple “base” case 2. Solution in simple “base” case

-\ /

def suﬁ\ff_squares(n):
if n < 1:
return 0
else:
return sgm_of_squares(n—l) + N*x%x2

/ \

3. Assume recusive solution to
simpler problem

4.”Combine” the simpler part of the
solution, with the recursive case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

bJeE16S88 Sp1g Ls

In words

« The sum of no numbers is zero
 The sum of 12 through n?is the
- sum of 12 through (n-1)?

- plus n?

def sum_of_squares(n):
if n < 1:
return 0
else:
return sum_of_squares(n-1) + nxx2

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why does it work

sum_of_squares(3)

sum_of_squares(3) => sum_of_squares(2) + 3**2

=> sum_of_squares(l) + 2*%*2 + 3%%x2

=> sum_of_squares(0) + 1x*2 + 2%%x2 + 3%x%2
=> 0 + 1x*x2 + 2%%2 + 3%%2 = 14

bJ6I6S88 Sp1o Ls UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org 50

Review: Functions

def <function name> (<argument list>) :

Lo

return expl’eSSiOﬂ

def concat(strl, str2):
return strl+str2;

concat(“Hello”,”World”)

« Generalizes an expression or set of statements to
apply to lots of instances of the problem

« A function should do one thing well

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

How does it work?

Fach recursive call gets its own local variables

- Just like any other function call

Computes its result (possibly using additional calls)
- Just like any other function call

Returns its result and returns control to its caller
- Just like any other function call

The function that is called happens to be itself

- Called on a simpler problem
- Eventually stops on the simple base case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Questions

« In what order do we sum the squares ?

« How does this compare to iterative approach ?

accum = 0

return accum

def sum_of_squares(n):

for i in range(l,n+1l):
accum = accum + i*i

def sum_of_squares(n):
if n < 1:
return 0
else:
return sum_of_squares(n-1) + n*xx*2

def sum_of_squares(n):
if n < 1:
return 0
else:
return nxx2 + sum_of_squares(n-1)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Trust ...

« The recursive “leap of faith” works as long as we hit
the base case eventually

What happens if we don’t?

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why Recursion?

« “After Abstraction, Recursion is probably the 2" biggest idea in
this course”

* “It's tremendously useful when the problem is self-similar”

* “It's no more powerful than iteration, but often leads to more
concise & better code”

)

e “It’s more ‘mathematical

* “It embodies the beauty and joy of computing”

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recursion (unwanted)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Example I

List all items on your hard disk

EILJ_:‘/ gravelleconsulting .
= scripts
EE dijit
&= dojo
: #-(= dojox
=l (= widgets

== css
. - StockInfo.css /\
= images
: ~~~~~ 47 crude_oil_179x98.png
~~~~~ ._1T qasoline_179x93.png
-4 gold_179x98.png
L ET natural_gas_179x98.png
== templates
| - StockInfo.html
- stockWidget. html

Files

* Folders contain
- Files
- Folders

Recursion!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org



bJeE16S88 Sp19 Lg

Another Example

indexing an element of a sequence

def first(s):
"""Return t st element in a sequence."""

return s[0]

def rest(s):
"""Return all elements in a sequence after the first"""

return s[1:]

Slicing a sequence of elements

def min_r(s):
“PPReturn minimum value in a sequence.”””
if

else:

« Recursion over sequence length, rather than number
magnitude

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

31




Why Recursion? More Reasons

* Recursive structures exist (sometimes hidden) in nature and therefore in datal!

* It’'s mentally and sometimes computationally more efficient to process recursive
structures using recursion.

bJ6I6S88 Sp1o Ls UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org 24



