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Announcements

• Maps is out
– Checkpoint 1 is due tonight. It's a few short functions
– No slip days for the check point, but slip days for the rest of the project.

• Midterm:
– Thursday 3/11
– Includes recursion (today and Friday)
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Computing In The News

• AI Can Write a Passing College Paper in 20 Minutes
ZDNet Greg Nichols February 24, 2021

Researchers at Education Reference Desk (EduRef), a resource for current 
and prospective students, found that an artificial intelligence (AI) tool can 
write a college term paper in three to 20 minutes and achieve a passing grade. 
Humans, in contrast, took three days on average to complete the same 
assignment. The researchers had a panel of professors grade anonymous 
submissions to writing prompts from recent graduates and undergraduate-
level writers and Open AI's GPT-3, a deep learning language prediction model. 
The professors gave GPT-3 an average grade of "C" in four subjects, and it 
failed just one assignment. Said the researchers, "Even without being 
augmented by human interference, GPT-3's assignments received more or less 
the same feedback as the human writers."
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https://www.zdnet.com/article/ai-can-write-a-passing-college-paper-in-20-minutes/
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Why Recursion?

• Recursive structures exist (sometimes hidden) in nature and therefore in data!
• It’s mentally and sometimes computationally more efficient to process recursive 

structures using recursion. 
• Sometimes, the recursive definition is easier to understand or write, even if it is 

computationally slower.
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Today: Recursion

• Recursive function calls itself, directly or indirectly
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Demo: Vee

• run 11-recursion.py
• The file will open an interpreter. 
• Use the following keys to play with the demo

– Space to draw
– C to Clear
– Up to add "vee" to the functions list
– Down to remove the "vee" functions from the list.
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Demo: Countdown

def countdown(n):
if n == 0:

print('Blastoff!')
else:

print(n)
countdown(n - 1)
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The Recursive Process

§ Recursive solutions involve two major parts:
ú Base case(s), the problem is simple enough to be solved directly
ú Recursive case(s). A recursive case has three components:

  Divide the problem into one or more simpler or smaller parts
  Invoke the function (recursively) on each part, and
  Combine the solutions of the parts into a solution for the problem.
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Learning Objectives

• Compare Recursion and Iteration to each other
– Translate some simple functions from one method to another

• Write a recursive function
– Understand the base case and a recursive case
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Iteration vs Recursion: Sum Numbers

For loop:

def sum(n):
s=0
for i in range(0,n+1):

s=s+i
return s 
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Iteration vs Recursion: Sum Numbers

def sum(n):
s=0
i=0
while i<n:

i=i+1
s=s+i

return s 

While loop:
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Iteration vs Recursion: Sum Numbers

def sum(n):
if n == 0:

return 0
return n+sum(n-1)

Recursion:
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Iteration vs Recursion: Cheating!

15

def sum(n):
return (n * (n + 1)) / 2

Sometimes it’s best to just use a formula! But that’s not always the point. J



UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

The Recursive Process

§ Recursive solutions involve two major parts:
ú Base case(s), the problem is simple enough to be solved directly
ú Recursive case(s). A recursive case has three components:

  Divide the problem into one or more simpler or smaller parts
  Invoke the function (recursively) on each part, and
  Combine the solutions of the parts into a solution for the problem.
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Recall: Iteration

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i*i
return accum

1. Initialize the “base” case of no iterations

2. Starting value

3. Ending value

4. New loop variable value
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Recursion Key concepts – by example

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

1. Test for simple “base” case 2. Solution in simple “base” case

3. Assume recusive solution to 
simpler problem 4. ”Combine” the simpler part of the 

solution, with the recursive case
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In words

• The sum of no numbers is zero
• The sum of 12 through n2 is the 

– sum of 12 through (n-1)2 

– plus n2
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def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2 
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Why does it work
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sum_of_squares(3)

# sum_of_squares(3) => sum_of_squares(2) + 3**2 
#              => sum_of_squares(1) + 2**2 + 3**2 
#              => sum_of_squares(0) + 1**2 + 2**2 + 3**2  
#              => 0 + 1**2 + 2**2 + 3**2 = 14
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Review: Functions

• Generalizes an expression or set of statements to 
apply to lots of instances of the problem
• A function should do one thing well

expression

def <function name> (<argument list>) : 

return

def concat(str1, str2):
return str1+str2;

concat(“Hello”,”World”)
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How does it work?

• Each recursive call gets its own local variables
– Just like any other function call

• Computes its result (possibly using additional calls)
– Just like any other function call

• Returns its result and returns control to its caller
– Just like any other function call

• The function that is called happens to be itself
– Called on a simpler problem
– Eventually stops on the simple base case
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Questions

• In what order do we sum the squares ?
• How does this compare to iterative approach ?

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i*i
return accum

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2 

def sum_of_squares(n):
if n < 1:

return 0
else:

return n**2 + sum_of_squares(n-1)
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Trust …

• The recursive “leap of faith” works as long as we hit 
the base case eventually

What happens if we don’t?
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Why Recursion?

• “After Abstraction, Recursion is probably the 2nd biggest idea in 
this course”

• “It’s tremendously useful when the problem is self-similar”
• “It’s no more powerful than iteration, but often leads to more 

concise & better code”
• “It’s more ‘mathematical’”
• “It embodies the beauty and joy of computing”
• …
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Recursion (unwanted)
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Example I

List all items on your hard disk

• Files
• Folders contain

– Files
– Folders

Recursion!
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Another Example

• Recursion over sequence length, rather than number 
magnitude

31UCB CS88 Sp19 L52/25/19

def first(s):
"""Return the first element in a sequence."""
return s[0]

def rest(s):
"""Return all elements in a sequence after the first"""
return s[1:]

def min_r(s):
“””Return minimum value in a sequence.”””
if len(s) == 1:

return first(s)
else:

return min(first(s), min_r(rest(s)))

Base Case

Recursive Case

indexing an element of a sequence

Slicing a sequence of elements
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Why Recursion? More Reasons

• Recursive structures exist (sometimes hidden) in nature and therefore in data!
• It’s mentally and sometimes computationally more efficient to process recursive 

structures using recursion. 
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