
LINKED LISTS AND TREES 10
COMPUTER SCIENCE 88

April 14, 2021

1 Linked Lists

Linked lists are data abstractions that can have multiple implementations. Previously,
we saw linked lists implemented using Python lists. Today, we will look at linked lists
implemented using Object-Oriented Programming. Here it is:
class Link:

empty = ()
def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def __getitem__(self, i):
if i == 0:

return self.first
return self.rest[i-1]

def __len__(self):
return 1 + len(self.rest)

When we implemented linked lists using Python lists, we called first(lnk) and rest(lnk)
to access the first and rest elements. This time, we can write lnk.first and lnk.rest
instead. In the former, we could access the elements, but we could not modify them. In
the latter, we can access and also modify the elements. In other words, linked lists imple-
mented using OOP is mutable.

In addition to the constructor init , we have the special Python methods getitem
and len . Note that any method that begins and ends with two underscores is a spe-
cial Python method. Special Python methods may be invoked using built-in functions and



DISCUSSION 10: LINKED LISTS AND TREES Page 2
special notation. The built-in Python element selection operator, as in lst[i], invokes
lst. getitem (i). Likewise, the built-in Python function len, as in len(lst), in-
vokes lst. len ().
class Link:

empty = ()
def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def __repr__(self):
if self.rest:

rest_str = ', ' + repr(self.rest)
else:

rest_str = ''
return 'Link({0}{1})'.format(repr(self.first), rest_str)

def __str__(self):
string = '<'
while self.rest is not Link.empty:

string += str(self.first) + ' '
self = self.rest

return string + str(self.first) + '>'

2 Questions

1. Write a function that takes in a a linked list and returns the sum of all its elements.
You may assume all elements in lnk are integers.
def sum_nums(lnk):

"""
>>> a = Link(1, Link(6, Link(7)))
>>> sum_nums(a)
14
"""

Solution:
if lnk == Link.empty:

return 0
return lnk.first + sum_nums(lnk.rest)

CS 88 Spring 2021



DISCUSSION 10: LINKED LISTS AND TREES Page 3
2. Write a iterative function is palindrome that takes a LinkedList, lnk, and returns
True if lnk is a palindrome and False otherwise. Hint: Use the reverse function
from lab09.
def is_palindrome(lnk):

"""
>>> one_link = Link(1)
>>> is_palindrome(one_link)
True
>>> lnk = Link(1, Link(2, Link(3, Link(2, Link(1)))))
>>> is_palindrome(lnk)
True
>>> is_palindrome(Link(1, Link(2, Link(3, Link(1)))))
False
"""

Solution:
reversed = reverse(lnk)
while lnk is not Link.empty and reversed.first == lnk.

first:
reversed = reversed.rest
lnk = lnk.rest

return lnk is Link.empty

CS 88 Spring 2021



DISCUSSION 10: LINKED LISTS AND TREES Page 4
3. Write a function that takes a sorted linked list of integers and mutates it so that all

duplicates are removed.
def remove_duplicates(lnk):

"""
>>> lnk = Link(1, Link(1, Link(1, Link(1, Link(5)))))
>>> remove_duplicates(lnk)
>>> lnk
Link(1, Link(5))
"""

Solution: Recursive solution:
if lnk is Link.empty or lnk.rest is Link.empty:

return
if lnk.first == lnk.rest.first:

lnk.rest = lnk.rest.rest
remove_duplicates(lnk)

else:
remove_duplicates(lnk.rest)

For a list of one or no items, there are no duplicates to remove.

Now consider two possible cases:

• If there is a duplicate of the first item, we will find that the first and second
items in the list will have the same values (that is, lnk.first == lnk.rest.first).
We can confidently state this because we were told that the input linked list
is in sorted order, so duplicates are adjacent to each other. We’ll remove the
second item from the list.

Finally, it’s tempting to recurse on the remainder of the list (lnk.rest), but
remember that there could still be more duplicates of the first item in the rest
of the list! So we have to recurse on lnk instead. Remember that we have
removed an item from the list, so the list is one element smaller than before.
Normally, recursing on the same list wouldn’t be a valid subproblem.

• Otherwise, there is no duplicate of the first item. We can safely recurse on the
remainder of the list.

Iterative solution:
while lnk is not Link.empty and lnk.rest is not Link.

empty:
if lnk.first == lnk.rest.first:

lnk.rest = lnk.rest.rest
else:

CS 88 Spring 2021



DISCUSSION 10: LINKED LISTS AND TREES Page 5

lnk = lnk.rest

The loop condition guarantees that we have at least one item left to consider with
lnk.

For each item in the linked list, we pause and remove all adjacent items that have
the same value. Once we see that lnk.first != lnk.rest.first, we can
safely advance to the next item. Once again, this takes advantage of the property
that our input linked list is sorted.

3 Trees

In computer science, trees are recursive data structures that are widely used in various
settings.

Contrary to our ideas of a tree, in computer science, a tree branches downward. The root
of a tree starts at the top, and the leaves are at the bottom.

A tree is considered a recursive data structure because every branch from a node is also a
tree.

Some terminology regarding trees:

• Parent node: A node that has branches. Parent nodes can have multiple branches.

• Child node: A node that has a parent. A child node can only belong to one parent.

• Root: The top node of the tree. In our example, the node that contains 7 is the root.

• Label: The value at a node. In our example, all of the integers are values.

• Leaf: A node that has no branches. In our example, the nodes that contain −4, 0, 6,
17, and 20 are leaves.

• Branch: A subtree of the root. Note that trees have branches, which are trees them-
selves: this is why trees are recursive data structures.

• Depth: How far away a node is from the root. In other words, the number of edges
between the root of the tree to the node. In the diagram, the node containing 19 has
depth 1; the node containing 3 has depth 2. Since there are no edges between the root
of the tree and itself, the depth of the root is 0.

• Height: The depth of the lowest leaf. In the diagram, the nodes containing −4, 0, 6,
and 17 are all the “lowest leaves,” and they have depth 4. Thus, the entire tree has
height 4.

In computer science, there are many different types of trees. Some vary in the number of
branches each node has; others vary in the structure of the tree. Recall the tree abstract

CS 88 Spring 2021



DISCUSSION 10: LINKED LISTS AND TREES Page 6
data type: a tree is defined as having a label and some branches. Trees can be imple-
mented as an ADT, but we will only be focusing on the Tree class this semester. Below is
the most basic implementation of a Tree class that we will be using.
class Tree:

def __init__(self, label, branches=[]):
for b in branches:

assert isinstance(b, Tree)
self.label = label
self.branches = branches

def is_leaf(self):
return not self.branches

Notice that with this implementation we can mutate a tree using attribute assignment,
which wouldn’t be possible in the implementation using lists in an ADT.
>>> t = Tree(3, [Tree(4), Tree(5)])
>>> t.label = 5
>>> t.label
5

CS 88 Spring 2021



DISCUSSION 10: LINKED LISTS AND TREES Page 7
3.1 Questions

1. What would Python display? If you believe an expression evaluates to a Tree object,
write Tree.
>>> t0 = Tree(0)
>>> t0.label

Solution: 0

>>> t0.branches

Solution: []

>>> t1 = Tree(0, [1, 2])#Is this a valid tree?

Solution: AssertionError #As the branches must be Tree objects

>>> t2 = Tree(0, [Tree(1), Tree(2, [Tree(3)])])
>>> t2.branches[0]

Solution: Tree(1)

>>> t2.branches[1].branches[0].label

Solution: 3

2. Define a function make even which takes in a tree t whose values are integers, and
mutates the tree such that all the odd integers are increased by 1 and all the even
integers remain the same.
def make_even(t):

"""
>>> t = Tree(1, [Tree(2, [Tree(3)]), Tree(4), Tree(5)])
>>> make_even(t)
>>> t.label
2
>>> t.branches[0].branches[0].label
4
"""

CS 88 Spring 2021



DISCUSSION 10: LINKED LISTS AND TREES Page 8

Solution:
if t.label % 2 != 0:

t.label += 1
for branch in t.branches:

make_even(branch)

CS 88 Spring 2021



DISCUSSION 10: LINKED LISTS AND TREES Page 9
3. Write a function that combines the values of two trees t1 and t2 together with the
combiner function. Assume that t1 and t2 have identical structure. This function
should return a new tree.
def combine_tree(t1, t2, combiner):

"""
>>> a = Tree(1, [Tree(2, [Tree(3)])])
>>> b = Tree(4, [Tree(5, [Tree(6)])])
>>> combined = combine_tree(a, b, mul)
>>> combined.root
4
>>> combined.branches[0].root
10
"""

Solution:
combined = [combine_tree(b1, b2, combiner) for b1, b2

in zip(t1.branches, t2.branches)]
return Tree(combiner(t1.root, t2.root), combined)

CS 88 Spring 2021


