Computational Structures in Data Science

e Abstract Data Types
el & Dictionaries

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Today’s Lecture

* Abstract Data Types
- More use of functions!

-Value IN documentation and clarity

* New Python Data Types
- Dictionaries: a really useful tool!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Abstract Data Type

» Uses pure functions to encapsulate some logic as part of a program.
» We rely of built-in types (int, str, list, etc) to build ADTs
* This is a contrast to object-oriented programming

-Which is coming soon!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Creating Abstractions

» Compound values combine other values together

- date: a year, a month, and a day
- geographic position: latitude and longitude
-a game board

+ Data abstraction lets us manipulate compound values as units
* Isolate two parts of any program that uses data:

- How data are represented (as parts)
- How data are manipulated (as units)

+ Data abstraction: A methodology by which functions enforce an abstraction barrier between
representation and use

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org 4

Why Abstract Data Types?

* “Self-Documenting”

- contact_name(contact)
» Vs contact[o]

- “0” may seem clear now, but what about in a week? 3 months?
* Change your implementation
- Maybe today it’s just a Python List
-Tomorrow: It could be a file on your computer; a database in web

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Abstract Data Type

Operations Object

Constructors
Selectors Internal Representation
Operations Implementation on that
Internal representation
External Representation

Interface
Abstraction Barrier!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

C.O.R.E concepts

Abstract Data Type

\

—

Perform useful computations
treating objects abstractly as

CompUte whole values and operating on

them.

. Provide operations on the

Operatlons abstract components that allow
ease of use — independent of
concrete representation.

Representation Constructors and selectors that

provide an abstract interface to
a concrete representation

Execution on a computing

Evaluation machine

Abstraction Barrier

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Reminder: Lists

* Lists
- Constructors:
»list(...)
» [<exps>,...]
» [<exp> for <var> in <list> [if <exp>]]
-Selectors: <list> [<index or slice>]
- Operations: in, not in, +, *, len, min, max
» Mutable ones too (but not yet
* Tuples

- A lot like lists, but you cannot edit them. We'll revisit on Monday.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

A Small ADT

def point(x, y): # constructor
return [x, VY]

x = lambda point: point[0] # selector
y = lambda point: point[1]

def distance(pl, p2): # Operator
return ((x(p2) - x(pl)**2 + (y(p2) -
y(pl))**x2) ** 0.5

origin = point(0, 0)

my_house = point(5, 5)

campus = point(25, 25)

distance_to_campus = distance(my_house, campus)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Creating an Abtract Data Type

* Constructors & Selectors
» Operations

- Express the behavior of objects, invariants, etc

-Implemented (abstractly) in terms of Constructors and Selectors for the object
* Representation

-Implement the structure of the object

* An abstraction barrier violation occurs when a part of the program that can use the higher level
functions uses lower level ones instead

- At either layer of abstraction

* Abstraction barriers make programs easier to get right, maintain, and modify
- Few changes when representation changes

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Question: Changing Representations?

Question 2.1

Assuming we update our selectors, what are valid representations for our
point(x, y) ADT?

Currently point (1, 2) isrepresentedas [1, 2]

‘A Ly, x] # [2, 1]

*B)“X: ” + str(x) + “ Y: ” + str(y)
“X: 1 Y: 2”7

+O)str(x) + " ' + str(y) # '1 2'

* D) All of the above

* E) None of the above

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

11

A Layered Design Process

» Build the application based entirely on the ADT interface
— Operations, Constructors and Selectors

» Build the operations in ADT on Constructors and Selectors
— Not the implementation representation
— This is the end of the abstraction barrier.

* Build the constructors and selectors on some concrete representation

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Computational Structures in Data Science

UC Berkeley EECS
Lecturer
Michael Ball

Dictionaries

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Learning Objectives

* Dictionaries are a new type in Python
* Lists let us index a value by a number, or position.
* Dictionaries let us index data by other kinds of data.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

18

Dictionaries

* Constructors:

» dict(<list of 2-tuples>)

» dict(<key>=<val>, ...)

» { <key exp>:<val exp>, .. }

» { <key>:<val> for <iteration expression> }
>>> {x:y for x,y in zip(["a","b"],[1,2])}
e{'a': 1, 'b': 2}

« Selectors: <dict> [<key>]
» <dict>.keys(), .items(), .values()
» <dict>.get(key [, default])

» Operations:
» key in dict, key not in, len(dict)
» <dict>[<key>] = <val>

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Dictionary Example

In [1]: text = "Once upon a time"
d = {word : len(word) for word in text.split()}
d

Out[l]): {'Once': 4, 'a': 1, 'time': 4, 'upon': 4}

In [2]: d['Once']

out[2]: 4

In [3]: d.items()
Out[3): [('a', 1), ('time', 4), ('upon', 4), ('Once', 4)]
In [4]: for (k,v) in d.items():
print(k,"=>",v)

(‘a', '=>", 1)

('time', '=>', 4)

(vuponl’ |=>|' 4)

('Once', '=>', 4)
In [5]: d.keys()

out[5]: ['a', 'time', 'upon', 'Once’]

In [6]: d.values()

Out(6]: [1, 4, 4, 4]

Question: Dictionaries

What is the result of the final expression?

my_dict = { ‘course’: ’CS 88’, semester = ‘Fall’ }
my_dict[‘semester’] = ’Spring’

my_dict[‘semester’]
a) ‘Fall’

b) ‘Spring’
c) Error

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Limitations of Dictionaries

» Dictionaries are unordered collections of key-value pairs
* Dictionary keys have two restrictions:

-A key of a dictionary cannot be a list or a dictionary (or any
mutable type)

-Two keys cannot be equal; There can be at most one value for a
given key

This first restriction is tied to Python’s underlying implementation of
dictionaries

The second restriction is part of the dictionary abstraction

If you want to associate multiple values with a key, store them all in a
sequence value

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Beware

* Built-in data type dict relies on mutation
- Clobbers the object, rather than “functional” - creating a new one

* Throws an errors of key is not present
* We will learn about mutation shortly

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.or;
UCB CS88 Fa19 L7 y | Comp I | heep:// g

