
Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Abstract Data Types
& Dictionaries

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Today’s Lecture
• Abstract Data Types

– More use of functions!

– Value in documentation and clarity

• New Python Data Types
– Dictionaries: a really useful tool!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Abstract Data Type
• Uses pure functions to encapsulate some logic as part of a program.
• We rely of built-in types (int, str, list, etc) to build ADTs
• This is a contrast to object-oriented programming
–Which is coming soon!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Creating Abstractions
• Compound values combine other values together

– date: a year, a month, and a day
– geographic position: latitude and longitude
– a game board

• Data abstraction lets us manipulate compound values as units
• Isolate two parts of any program that uses data:

– How data are represented (as parts)
– How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an abstraction barrier between
representation and use

4

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why Abstract Data Types?

• “Self-Documenting”
– contact_name(contact)

»vs contact[0]

– “0” may seem clear now, but what about in a week? 3 months?

• Change your implementation
– Maybe today it’s just a Python List
– Tomorrow: It could be a file on your computer; a database in web

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Abstract Data Type

A new Data
Type

Internal Representation

External Representation

Constructors

Selectors

Operations

Operations Object

Implementation on that
Internal representation

Interface
Abstraction Barrier!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

C.O.R.E concepts

Compute

Operations

Representation

Evaluation

Perform useful computations
treating objects abstractly as
whole values and operating on
them.

Provide operations on the
abstract components that allow
ease of use – independent of
concrete representation.

Constructors and selectors that
provide an abstract interface to
a concrete representation

Execution on a computing
machine

Ab
st

ra
ct

 D
at

a
Ty

pe

Abstraction Barrier

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Reminder: Lists

• Lists
– Constructors:

» list(…)
» [<exps>,…]
» [<exp> for <var> in <list> [if <exp>]]

– Selectors: <list> [<index or slice>]
– Operations: in, not in, +, *, len, min, max

»Mutable ones too (but not yet

• Tuples
– A lot like lists, but you cannot edit them. We'll revisit on Monday.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

A Small ADT

def point(x, y): # constructor
return [x, y]

x = lambda point: point[0] # selector
y = lambda point: point[1]

def distance(p1, p2): # Operator
return ((x(p2) - x(p1)**2 + (y(p2) -

y(p1))**2) ** 0.5

origin = point(0, 0)
my_house = point(5, 5)
campus = point(25, 25)
distance_to_campus = distance(my_house, campus)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Creating an Abtract Data Type

• Constructors & Selectors
• Operations

– Express the behavior of objects, invariants, etc
– Implemented (abstractly) in terms of Constructors and Selectors for the object

• Representation
– Implement the structure of the object

• An abstraction barrier violation occurs when a part of the program that can use the higher level
functions uses lower level ones instead

– At either layer of abstraction

• Abstraction barriers make programs easier to get right, maintain, and modify
– Few changes when representation changes

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Question: Changing Representations?

Question 2.1

Assuming we update our selectors, what are valid representations for our
point(x, y) ADT?

Currently point(1, 2) is represented as [1, 2]

• A) [y, x] # [2, 1]
• B) “X: ” + str(x) + “ Y: ” + str(y)

“X: 1 Y: 2”
• C) str(x) + ' ' + str(y) # '1 2'
• D) All of the above
• E) None of the above

11

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

A Layered Design Process
• Build the application based entirely on the ADT interface

– Operations, Constructors and Selectors
• Build the operations in ADT on Constructors and Selectors

– Not the implementation representation
– This is the end of the abstraction barrier.

• Build the constructors and selectors on some concrete representation

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Dictionaries

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

• Dictionaries are a new type in Python
• Lists let us index a value by a number, or position.
• Dictionaries let us index data by other kinds of data.

18

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Dictionaries

• Constructors:
» dict(<list of 2-tuples>)
» dict(<key>=<val>, ...)
» { <key exp>:<val exp>, … }
» { <key>:<val> for <iteration expression> }
•>>> {x:y for x,y in zip(["a","b"],[1,2])}
•{'a': 1, 'b': 2}

• Selectors: <dict> [<key>]
» <dict>.keys(), .items(), .values()
» <dict>.get(key [, default])

• Operations:
» key in dict, key not in, len(dict)
» <dict>[<key>] = <val>

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Dictionary Example

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Question: Dictionaries

What is the result of the final expression?

my_dict = { ‘course’: ’CS 88’, semester = ‘Fall’ }
my_dict[‘semester’] = ’Spring’

my_dict[‘semester’]

a) ‘Fall’
b) ‘Spring’
c) Error

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Limitations of Dictionaries

• Dictionaries are unordered collections of key-value pairs
• Dictionary keys have two restrictions:
–A key of a dictionary cannot be a list or a dictionary (or any
mutable type)
–Two keys cannot be equal; There can be at most one value for a
given key

This first restriction is tied to Python's underlying implementation of
dictionaries
The second restriction is part of the dictionary abstraction

If you want to associate multiple values with a key, store them all in a
sequence value

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Beware

• Built-in data type dict relies on mutation
– Clobbers the object, rather than “functional” – creating a new one

• Throws an errors of key is not present
• We will learn about mutation shortly

10/21/19 UCB CS88 Fa19 L7 23

