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Today’s Lecture
• Abstract Data Types

– More use of functions!

– Value in documentation and clarity

• New Python Data Types
– Dictionaries: a really useful tool!
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Abstract Data Type
• Uses pure functions to encapsulate some logic as part of a program.
• We rely of built-in types (int, str, list, etc) to build ADTs
• This is a contrast to object-oriented programming
–Which is coming soon!
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Creating Abstractions
• Compound values combine other values together

– date: a year, a month, and a day
– geographic position: latitude and longitude
– a game board

• Data abstraction lets us manipulate compound values as units
• Isolate two parts of any program that uses data: 

– How data are represented (as parts) 
– How data are manipulated (as units) 

• Data abstraction: A methodology by which functions enforce an abstraction barrier between 
representation and use 
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Why Abstract Data Types?

• “Self-Documenting”
– contact_name(contact)

»vs contact[0]

– “0” may seem clear now, but what about in a week? 3 months? 

• Change your implementation
– Maybe today it’s just a Python List
– Tomorrow: It could be a file on your computer; a database in web
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Abstract Data Type
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Interface
Abstraction Barrier!
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C.O.R.E concepts

Compute

Operations

Representation

Evaluation

Perform useful computations 
treating objects abstractly as 
whole values and operating on 
them.

Provide operations on the 
abstract components that allow 
ease of use – independent of 
concrete representation.

Constructors and selectors that 
provide an abstract interface to 
a concrete representation

Execution on a computing 
machine
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Reminder: Lists

• Lists
– Constructors: 

» list( … )
» [ <exps>,…  ] 
» [<exp> for <var> in <list> [ if <exp> ] ]

– Selectors: <list> [ <index or slice> ]
– Operations: in, not in, +, *, len, min, max

»Mutable ones too (but not yet

• Tuples
– A lot like lists, but you cannot edit them. We'll revisit on Monday.
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A Small ADT

def point(x, y): # constructor
return [x, y]

x = lambda point: point[0] # selector
y = lambda point: point[1]

def distance(p1, p2): # Operator
return ((x(p2) - x(p1)**2 + (y(p2) -

y(p1))**2) ** 0.5

origin = point(0, 0)
my_house = point(5, 5)
campus = point(25, 25)
distance_to_campus = distance(my_house, campus)
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Creating an Abtract Data Type

• Constructors & Selectors
• Operations

– Express the behavior of objects, invariants, etc
– Implemented (abstractly) in terms of Constructors and Selectors for the object

• Representation
– Implement the structure of the object 

• An abstraction barrier violation occurs when a part of the program that can use the higher level
functions uses lower level ones instead

– At either layer of abstraction

• Abstraction barriers make programs easier to get right, maintain, and modify
– Few changes when representation changes
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Question: Changing Representations?

Question 2.1 

Assuming we update our selectors, what are valid representations for our 
point(x, y) ADT?

Currently point(1, 2) is represented as [1, 2]

• A) [y, x] # [2, 1]
• B) “X: ” + str(x) + “ Y: ” + str(y)

# “X: 1 Y: 2”
• C) str(x) + ' ' + str(y) # '1 2'
• D) All of the above
• E) None of the above

11
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A Layered Design Process
• Build the application based entirely on the ADT interface

– Operations, Constructors and Selectors
• Build the operations in ADT on Constructors and Selectors

– Not the implementation representation
– This is the end of the abstraction barrier.

• Build the constructors and selectors on some concrete representation
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Dictionaries



UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

• Dictionaries are a new type in Python
• Lists let us index a value by a number, or position.
• Dictionaries let us index data by other kinds of data.

18
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Dictionaries

• Constructors: 
» dict( <list of 2-tuples> )
» dict( <key>=<val>, ...)
» { <key exp>:<val exp>, …  } 
» { <key>:<val> for <iteration expression> }
•>>> {x:y for x,y in zip(["a","b"],[1,2])}
•{'a': 1, 'b': 2}

• Selectors: <dict> [ <key> ]
» <dict>.keys(), .items(), .values()
» <dict>.get(key [, default] )

• Operations: 
» key in dict, key not in, len(dict)
» <dict>[ <key> ] = <val>
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Dictionary Example
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Question: Dictionaries

What is the result of the final expression?

my_dict = { ‘course’: ’CS 88’, semester = ‘Fall’ }
my_dict[‘semester’] = ’Spring’

my_dict[‘semester’]

a) ‘Fall’
b) ‘Spring’
c) Error
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Limitations of Dictionaries

• Dictionaries are unordered collections of key-value pairs
• Dictionary keys have two restrictions:
–A key of a dictionary cannot be a list or a dictionary (or any 
mutable type)
–Two keys cannot be equal; There can be at most one value for a 
given key

This first restriction is tied to Python's underlying implementation of 
dictionaries
The second restriction is part of the dictionary abstraction

If you want to associate multiple values with a key, store them all in a 
sequence value 
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Beware

• Built-in data type dict relies on mutation
– Clobbers the object, rather than “functional” – creating a new one

• Throws an errors of key is not present
• We will learn about mutation shortly
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