
Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Lecture:
Mutable Data

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

NOTES FOR NEXT TIME

•Move Sooner
•Briefly mention dictionaries
•Give more examples of basic lists in Python Tutor

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Announcements

• Ants project coming out soon.
– Puts OOP into practice!
• Next few weeks, some big ideas in CS!
– Today: Solidify some understandings of data structures
– Next up: Efficiency
– Soon: Linked-Lists and Trees (great 61B prep!)
• End: SQL. Foundational for Data Science

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Mutability: Lists

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

•Distinguish between when a function mutates data, or returns a new object
– Many Python "default" functions return new objects

•Understand modifying objects in place
•Python provides “is” and “==” for checking if items are the same, in different ways

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Objects

•An object is a bundle of data and behavior.
•A type of object is called a class.
• Every value in Python is an object.
– string, list, int, tuple, et

•All objects have attributes
•Objects often have associated methods
•Objects have a value (or values)
– Mutable: We can change the object after it has been created
– Immutable: We cannot change the object.

•Objects have an identity, a reference to that object.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Immutable Object: string

•course = 'CS88'

•What kind of object is it?
– type(course)

•What data is inside it?
– course[0]
– course[2:]

•What methods can we call?
– course.upper()
– course.lower()

•None of these methods modify our original string.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Dictionaries are Mutable, too

• Immutable – the value of the object cannot be changed
–integers, floats, booleans
–strings, tuples

•Mutable – the value of the object can change
–Lists
–Dictionaries

>>> alist = [1,2,3,4]
>>> alist
[1, 2, 3, 4]
>>> alist[2]
3
>>> alist[2] = 'elephant'
>>> alist
[1, 2, 'elephant', 4]

>>> adict = {'a':1, 'b':2}
>>> adict
{'b': 2, 'a': 1}
>>> adict['b']
2
>>> adict['b'] = 42
>>> adict['c'] = 'elephant'
>>> adict
{'b': 42, 'c': 'elephant', 'a':
1}

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Dictionaries – by example

Constructors:
dict(hi=32, lo=17)
dict([('hi',212),('lo',32),(17,3)])
{'x':1, 'y':2, 3:4}
{wd:len(wd) for wd in "The quick brown fox".split()}

Selectors:
water['lo']
<dict>.keys(), .items(), .values()
<dict>.get(key [, default])

Operations:
in, not in, len, min, max
'lo' in water

Mutators
water['lo'] = 33

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Immutability vs Mutability

•An immutable value is unchanging once created.
• Immutable types (that we've covered): int, float, string, tuple

a_string = "Hi y'all"
a_string[1] = "I" # ERROR
a_string += ", how you doing?"
an_int = 20
an_int += 2

•A mutable value can change in value throughout the course of computation. All
names that refer to the same object are affected by a mutation.
•Mutable types (that we've covered): list, dict

grades = [90, 70, 85]
grades_copy = grades
grades[1] = 100 # grades_copy changes too!
words = {"agua": "water"}
words["pavo"] = "turkey"

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

From value to storage …

•A variable assigned a compound value (object) is a reference to that object.
•Mutable objects can be changed but the variable(s) still refer to it
– x is still the same object, but it's values have changed.

x = [1, 2, 3]
y = 6

•x:

y: 6

…

frame 1 • 2 • 3 •6

x[1] = y
x[1]

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Mutating Lists: Example functions of the list class

•append() adds a single element to a list:
s = [2, 3]
t = [5, 6]
s.append(4)
s.append(t)
t = 0

Try in PythonTutor.
•extend() adds all the elements in one list to a list:
s = [2, 3]
t = [5, 6]
s.extend(4) # 🚫 Error: 4 is not an iterable!
s.extend(t)
t = 0

Try in PythonTutor. (After deleting the bad line)

http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Mutating Lists -- More Functions!

•list += [x, y, z] # just like extend.
– You need to be careful with this one! It modifies the list.

•pop() removes and returns the last element:
s = [2, 3]
t = [5, 6]
t = s.pop()

Try in PythonTutor.

•remove() removes the first element equal to the argument:
s = [6, 2, 4, 8, 4]
s.remove(4)

Try in PythonTutor.

https://stackoverflow.com/questions/2347265/why-does-behave-unexpectedly-on-lists
http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Mutation makes sharing visible

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Mutables Inside Immutables

•Mutable objects can "live" inside immutable objects!
•An immutable sequence may still change if it contains a mutable value as an element.
• Be very careful, and probably don't do this!

t = (1, [2, 3])
t[1][0] = 99
t[1][1] = "Problems"

• Try in PythonTutor

http://pythontutor.com/composingprograms.html

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Copies, 'is' and '=='

>>> alist = [1, 2, 3, 4]
>>> alist == [1, 2, 3, 4] # Equal values?
True
>>> alist is [1, 2, 3, 4] # same object?
False
>>> blist = alist # assignment refers
>>> alist is blist # to same object
True
>>> blist = list(alist) # type constructors copy
>>> blist is alist
False
>>> blist = alist[:] # so does slicing
>>> blist is alist
False
>>> blist
[1, 2, 3, 4]
>>>

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Equality vs Identity

list1 = [1,2,3]
list2 = [1,2,3]

•Equality: exp0 == exp1
evaluates to True if both exp0 and exp1 evaluate to objects containing equal
values (Each object can define what == means)
list1 == list2 # True
• Identity: exp0 is exp1
evaluates to True if both exp0 and exp1 evaluate to the same object
• Identical objects always have equal values.

list1 is list2 # False
• Try in PythonTutor.

http://pythontutor.com/composingprograms.html

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

What is the meaning of 'is'?

• is in Python means two items have the exact same identity
• Thus, a is b implies a == b
• Each object has a function id() which returns its "address"
– We won't get into what this means, but it's essentially an
internal "locator" for that data in memory.

• Think this is tricky? cool? amazing?
• Take CS61C (Architecture) and CS164 (Programming Languages)

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Passing Data Into Functions

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

• Passing in a mutable object in a function in Python lets you modify that object
• Immutable objects don't change when passed in as an argument
• Making a new name doesn't affect the value outside the function
• Modifying mutable data does modify the values in the parent frame.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Mutating Input Data

•Functions can mutate objects passed in as an argument
•Declaring a new variable with the same name as an argument only exists within the
scope of our function
– You can think of this as creating a new name, in the same way as redefining a
variable.
– This will not modify the data outside the function, even for mutable objects.
• BUT
– We can still directly modify the object passed in…even though it was created in some
other frame or environment.
– We directly call methods on that object.
•View Python Tutor

http://pythontutor.com/composingprograms.html

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Python Gotcha's: a += b and a = a + b

def add_data_to_obj(obj, data):
print(obj)
obj += data
print(obj)
return obj

def new_obj_with_data(obj, data):
print(obj)
obj = obj + data
print(obj)
return obj

• Sometimes similar looking operations have very different results!
• Why?
• = always binds (or rebinds) a value to a name.
• += maps to the special method, e.g. __iadd__

