
UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Announcements

• Ants project will actually be out in ~2 weeks
• Today:
– One set of loose ends about mutability and lists
– Understanding the Efficiency of code

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Passing Data Into Functions

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

• Passing in a mutable object in a function in Python lets you modify that object
• Immutable objects don't change when passed in as an argument
• Making a new name doesn't affect the value outside the function
• Modifying mutable data does modify the values in the parent frame.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Mutating Input Data

•Functions can mutate objects passed in as an argument
•Declaring a new variable with the same name as an argument only exists within the
scope of our function
– You can think of this as creating a new name, in the same way as redefining a
variable.
– This will not modify the data outside the function, even for mutable objects.
• BUT
– We can still directly modify the object passed in…even though it was created in some
other frame or environment.
– We directly call methods on that object.
•View Python Tutor

http://pythontutor.com/composingprograms.html

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Python Gotcha's: a += b and a = a + b

def add_data_to_obj(obj, data):
print(obj)
obj += data
print(obj)
return obj

def new_obj_with_data(obj, data):
print(obj)
obj = obj + data
print(obj)
return obj

• Sometimes similar looking operations have very different results!
• Why?
• = always binds (or rebinds) a value to a name.
• += maps to the special method, e.g. __iadd__

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Efficiency

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

•Runtime Analysis:
–How long will my program take to run?
–Why can’t we just use a clock?
– How can we simplify understanding computation in an algorithm
•Enjoy this stuff? Take 61B!
•Find it challenging? Don’t worry! It’s a different way of thinking.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Efficiency is all about trade-offs

•Running Code: Takes Time, Requires Memory
– More efficient code takes less time or uses less memory
•Any computation we do, requires both time and "space" on our computer.
•Writing efficient code is not obvious
– Sometimes it is even convoluted!
•But!
•We need a framework before we can optimize code
•Today, we're going to focus on the time component.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Is this code fast?

•Most code doesn’t really need to be fast! Computers, even your
phones are already amazingly fast!
•Sometimes…it does matter!

– Lots of data
– Small hardware
– Complex processes
• Slow code takes up battery power

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Runtime analysis problem & solution

•Time w/stopwatch, but…
–Different computers may have different runtimes. L
–Same computer may have different runtime on the same input. L
–Need to implement the algorithm first to run it. L

•Solution: Count the number of “steps” involved, not time!
–Each operation = 1 step
» 1 + 2 is one step
» lst[5] is one step

– When we say “runtime”, we’ll mean # of steps, not time!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Runtime: input size & efficiency

•Definition:
–Input size: the # of things in the
input.
– e.g. length of a list, the number
of iterations in a loop.
–Running time as a function of
input size
–Measures efficiency
• Important!
–In CS88 we won’t care about the
efficiency of your solutions!
–…in CS61B we will

CS88

CS61B

CS61C

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Runtime analysis : worst or average case?

•Could use avg case
–Average running time over a vast # of
inputs

•Instead: use worst case
–Consider running time as input grows
•Why?

–Nice to know most time we’d ever
spend

–Worst case happens often
–Avg is often ~ worst
•Often called “Big O” for "order"
– O(1), O(n) …

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Runtime analysis: Final abstraction

•Instead of an exact number of
operations we’ll use abstraction
–Want order of growth, or dominant term

•In CS88 we’ll consider
–Constant
–Logarithmic
–Linear
–Quadratic
–Exponential

•E.g. 10 n2 + 4log(n) + n
–…is quadratic

Graph of order of growth curves
on log-log plot

Constant

Logarithmic

Linear

QuadraticCubicExponential

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Example: Finding a student (by ID)

•Input
–Unsorted list of students L
–Find student S
•Output
–True if S is in L, else False
•Pseudocode Algorithm
–Go through one by one,
checking for match.
–If match, true
–If exhausted L and didn’t
find S, false

•Worst-case running time as
function of the size of L?

1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Computational Patterns

• If the number of steps to solve a problem is always the same → Constant time: O(1)
• If the number of steps increases similarly for each larger input → Linear Time: O(n)
– Most commonly: for each item
• If the number of steps increases by some a factor of the input → Quadradic Time: O(n2)
–Most commonly: Nested for Loops
•Two harder cases:
–Logarithmic Time: O(log n)
»We can double our input with only one more level of work
»Dividing data in “half” (or thirds, etc)

–Exponential Time: O(2n)
»For each bigger input we have 2x the amount of work!
»Certain forms of Tree Recursion

15

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Example: Finding a student (by ID)

•Input
–Sorted list of students L
–Find student S
•Output : same
•Pseudocode Algorithm
–Start in middle
–If match, report true
–If exhausted, throw away
half of L and check again in
the middle of remaining part
of L
–If nobody left, report false

•Worst-case running time as
function of the size of L?

1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Comparing Fibonacci

def iter_fib(n):
x, y = 0, 1
for _ in range(n):

x, y = y, x+y
return x

def fib(n): # Recursive
if n < 2:

return n
return fib(n - 1) + fib(n - 2)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Tree Recursion

•Fib(4) → 9 Calls
•Fib(5) → 16 Calls
•Fib(6) → 26 Calls
•Fib(7) → 43 Calls
•Fib(20) →

18

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why?

• Notice there was all this duplication in the tree?
•What is the exact order of growth?
– It's exponential.
– phi to the N, where phi is the golden ratio.

N Operations

1 1
2 3
3 5
4 9
7 41
8 67
20 21891

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Improving Efficiency

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

• Learn how to cache the results to save time.
• "memoization" is a specific version to avoid repeated calculations

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Example

• Use a dictionary to cache results.
• This is called memoization

fib_results = {}
def memo_fib(n): # Look up values in our dictionary.

global fib_results
if n in fib_results:

print(f'found {n} -> {fib_results[n]}')
return fib_results[n]

if n < 2:
fib_results[n] = n
return n

result = memo_fib(n - 1) + memo_fib(n - 2)
fib_results[n] = result
return result

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

A Better Approach

•Python's functools module has a `cache` function
• https://docs.python.org/3/library/functools.html#module-functools
• Uses a technique called decorators that we don't cover.

from functools import cache

@cache
def cache_fib(n): # Recursive

if n < 2:
return n

return cache_fib(n - 1) + cache_fib(n - 2)

https://docs.python.org/3/library/functools.html

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

What next?

•Understanding algorithmic complexity helps us know whether something is possible to
solve.
•Gives us a formal reason for understanding why a program might be slow
•This is only the beginning:
–We’ve only talked about time complexity, but there is space complexity.
–In other words: How much memory does my program require?
–Often you can trade time for space and vice-versa
–Tools like “caching” and “memorization” do this.

• If you think this is cool take CS61B!

