Announcements

- Ants project will actually be out in ~2 weeks
- Today:
 - One set of loose ends about mutability and lists
 - Understanding the Efficiency of code

Computational Structures in Data Science

UC Berkeley EECS Lecturer Michael Ball

Passing Data Into Functions

Learning Objectives

- Passing in a mutable object in a function in Python lets you modify that object
- Immutable objects don't change when passed in as an argument
- Making a new name doesn't affect the value outside the function
- Modifying mutable data **does** modify the values in the parent frame.

Mutating Input Data

- •Functions can mutate objects passed in as an argument
- •Declaring a new variable with the same name as an argument only exists within the scope of our function
 - You can think of this as creating a new name, in the same way as redefining a variable.
 - This will not modify the data outside the function, even for mutable objects.
- BUT
 - We can still directly modify the object passed in...even though it was created in some other frame or environment.
 - We directly call methods on that object.
- View Python Tutor

Python Gotcha's: a += b and a = a + b

- Sometimes similar *looking* operations have very different results!
- Why?
- = always binds (or rebinds) a value to a name.
- += maps to the special method, e.g. __**iadd__**

```
def add_data_to_obj(obj, data):
```

```
print(obj)
```

```
obj += data
```

```
print(obj)
```

```
return obj
```

```
def new_obj_with_data(obj, data):
```

```
print(obj)
```

```
obj = obj + data
```

```
print(obj)
```

```
return obj UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org
```


UC Berkeley EECS Lecturer Michael Ball

Computational Structures in Data Science

Efficiency

Learning Objectives

- •Runtime Analysis:
 - -How long will my program take to run?
 - -Why can't we just use a clock?
 - How can we simplify understanding computation in an algorithm
- •Enjoy this stuff? Take 61B!
- Find it challenging? Don't worry! It's a different way of thinking.

Efficiency is all about trade-offs

- Running Code: Takes Time, Requires Memory
 - More efficient code takes less time or uses less memory
- •Any computation we do, requires both time and "space" on our computer.
- Writing efficient code is not obvious
 - Sometimes it is even convoluted!
- •But!
- •We need a framework before we can optimize code
- •Today, we're going to focus on the time component.

Is this code fast?

- •Most code doesn't *really* need to be fast! Computers, even your phones are already amazingly fast!
- •Sometimes...it does matter!
 - Lots of data
 - Small hardware
 - Complex processes
- Slow code takes up battery power

Runtime analysis problem & solution

- •Time w/stopwatch, but...
 - -Different computers may have different runtimes. 🙁
 - -Same computer may have different runtime on the same input. \otimes
 - -Need to implement the algorithm first to run it. $\ensuremath{\mathfrak{S}}$
- Solution: Count the number of "steps" involved, not time!
 - -Each operation = 1 step
 - » 1 + 2 is one step
 - » lst[5] is one step
 - When we say "runtime", we'll mean # of steps, not time!

Runtime: input size & efficiency

- •Definition:
 - -Input size: the # of things in the input.
 - e.g. length of a list, the number of iterations in a loop.
 - -Running time as a function of input size
 - -Measures efficiency
- Important!
 - -In CS88 <u>we won't care</u> about the efficiency of your solutions!
 - -...in CS61B we will

Runtime analysis : worst or average case?

- •Could use avg case
 - -Average running time over a vast # of inputs
- Instead: use worst case
 - -Consider running time as input grows
- •Why?
 - -Nice to know most time we'd <u>ever</u> spend
 - -Worst case happens often
 - -Avg is often ~ worst
- •Often called "Big O" for "order"
 - O(1), O(n) ...

Runtime analysis: Final abstraction

- Instead of an exact number of operations we'll use abstraction
 - -Want order of growth, or dominant term
- •In CS88 we'll consider
 - -Constant
 - -Logarithmic
 - -Linear
 - -Quadratic
 - -Exponential
- •E.g. 10 n² + 4log(n) + n
 - -...is quadratic

Graph of order of growth curves on log-log plot

Example: Finding a student (by ID)

•Input

-<u>Unsorted</u> list of students L

-Find student S

•Output

- -True if S is in L, else False
- Pseudocode Algorithm
 - -Go through one by one, checking for match.
 - -If match, true
 - -If exhausted L and didn't find S, false

- •Worst-case running time as function of the size of L?
 - 1. Constant
 - 2. Logarithmic
 - 3. Linear
 - 4. Quadratic
 - 5. Exponential

Computational Patterns

- If the number of steps to solve a problem is always the same \rightarrow Constant time: O(1)
- If the number of steps increases similarly for each larger input \rightarrow Linear Time: O(n)
 - Most commonly: for each item
- If the number of steps increases by some a factor of the input \rightarrow Quadradic Time: $O(n^2)$
 - -Most commonly: Nested for Loops
- •Two harder cases:
 - -Logarithmic Time: O(log n)
 - »We can double our input with only one more level of work
 - »Dividing data in "half" (or thirds, etc)
 - -Exponential Time: $O(2^n)$
 - »For each bigger input we have 2x the amount of work!
 - »Certain forms of Tree Recursion

Example: Finding a student (by ID)

- •Input
 - -<u>Sorted</u> list of students L
 - -Find student S
- •Output : same
- Pseudocode Algorithm
 - -Start in middle
 - -If match, report true
 - -If exhausted, throw away half of L and check again in the middle of remaining part of L
 - -If nobody left, report false

- •Worst-case running time as function of the size of L?
 - 1. Constant
 - 2. Logarithmic
 - 3. Linear
 - 4. Quadratic
 - 5. Exponential

Comparing Fibonacci

```
def iter_fib(n):
    x, y = 0, 1
    for _ in range(n):
        x, y = y, x+y
    return x

def fib(n): # Recursive
    if n < 2:
        return n
    return fib(n - 1) + fib(n - 2)</pre>
```


Tree Recursion

Why?

- Notice there was all this duplication in the tree?
- •What is the exact order of growth?
 - It's exponential.
 - phi to the N, where phi is the golden ratio.

Ν	Operations
1	1
2	3
3	5
4	9
7	41
8	67
20	21891
	UC Berkeley Computer Science 88 Michael Ball http://cs88.org

UC Berkeley EECS Lecturer Michael Ball

Computational Structures in Data Science

Improving Efficiency

Learning Objectives

- Learn how to cache the results to save time.
- "memoization" is a specific version to avoid repeated calculations

Example

- Use a dictionary to cache results.
- This is called *memoization*

```
fib_results = {}
def memo_fib(n): # Look up values in our dictionary.
global fib_results
if n in fib_results:
    print(f'found {n} -> {fib_results[n]}')
    return fib_results[n]
if n < 2:
    fib_results[n] = n
    return n
result = memo_fib(n - 1) + memo_fib(n - 2)
fib_results[n] = result
return result</pre>
```


A Better Approach

- Python's functools module has a `cache` function
- https://docs.python.org/3/library/functools.html#module-functools
- Uses a technique called decorators that we don't cover.

```
from functools import cache
```

```
@cache
@cache_fib(n): # Recursive
if n < 2:
    return n
    return cache_fib(n - 1) + cache_fib(n - 2)</pre>
```

What next?

- Gives us a formal reason for understanding why a program might be slow
- •This is only the beginning:
 - -We've only talked about time complexity, but there is *space complexity*.
 - -In other words: How much memory does my program require?
 - -Often you can trade time for space and vice-versa
 - -Tools like "caching" and "memorization" do this.
- If you think this is cool take CS61B!

