Announcements

- Ants project will actually be out in ~ 2 weeks
- Today:
- One set of loose ends about mutability and lists
- Understanding the Efficiency of code

Computational Structures in Data Science

UC Berkeley EECS
Lecturer
Michael Ball

Passing Data Into Functions

Learning Objectives

- Passing in a mutable object in a function in Python lets you modify that object
- Immutable objects don't change when passed in as an argument
- Making a new name doesn't affect the value outside the function
- Modifying mutable data does modify the values in the parent frame.

Mutating Input Data

-Functions can mutate objects passed in as an argument
-Declaring a new variable with the same name as an argument only exists within the scope of our function

- You can think of this as creating a new name, in the same way as redefining a variable.
- This will not modify the data outside the function, even for mutable objects.
-BUT
- We can still directly modify the object passed in...even though it was created in some other frame or environment.
- We directly call methods on that object.
- View Python Tutor

Python Gotcha's: $\mathrm{a}+=\mathrm{b}$ and $\mathrm{a}=\mathrm{a}+\mathrm{b}$

- Sometimes similar looking operations have very different results!
- Why?
- = always binds (or rebinds) a value to a name.
- += maps to the special method, e.g. __iadd def add_data_to_obj(obj, data):
print(obj)
obj += data
print(obj)
return obj
def new_obj_with_data(obj, data):
print(obj)
obj $=$ obj + data
print(obj)
return obj

Computational Structures in Data Science

UC Berkeley EECS
Lecturer
Michael Ball

Efficiency

Learning Objectives

-Runtime Analysis:
-How long will my program take to run?
-Why can't we just use a clock?

- How can we simplify understanding computation in an algorithm
-Enjoy this stuff? Take 61B!
- Find it challenging? Don't worry! It's a different way of thinking.

Efficiency is all about trade-offs

- Running Code: Takes Time, Requires Memory
- More efficient code takes less time or uses less memory
-Any computation we do, requires both time and "space" on our computer.
-Writing efficient code is not obvious
- Sometimes it is even convoluted!
-But!
-We need a framework before we can optimize code
-Today, we're going to focus on the time component.

Is this code fast?

- Most code doesn't really need to be fast! Computers, even your phones are already amazingly fast!
-Sometimes...it does matter!
- Lots of data
- Small hardware
- Complex processes
- Slow code takes up battery power

Runtime analysis problem \& solution

-Time w/stopwatch, but...
-Different computers may have different runtimes. ©
-Same computer may have different runtime on the same input. ©
-Need to implement the algorithm first to run it. :
-Solution: Count the number of "steps" involved, not time!
-Each operation = 1 step
> $1+2$ is one step
> Ist[5] is one step

- When we say "runtime", we'll mean \# of steps, not time!

Runtime: input size \& efficiency
-Definition:
-Input size: the \# of things in the input.

- e.g. length of a list, the number of iterations in a loop.
-Running time as a function of input size
-Measures efficiency
-Important!
-In CS88 we won't care about the efficiency of your solutions!
-...in CS61B we will

CS61B

CS88

Runtime analysis : worst or average case?
-Could use avg case
-Average running time over a vast \# of inputs
-Instead: use worst case
-Consider running time as input grows
-Why?
-Nice to know most time we'd ever
 spend
-Worst case happens often
-Avg is often ~ worst
-Often called "Big O" for "order"

- $O(1), O(n)$...

Runtime analysis: Final abstraction

- Instead of an exact number of operations we'll use abstraction
-Want order of growth, or dominant term
- In CS88 we'll consider
-Constant
-Logarithmic
-Linear
-Quadratic
-Exponential
-E.g. $10 n^{2}+4 \log (n)+n$
-...is quadratic

Exponential Cubic Quadratic

Example: Finding a student (by ID)

- Input
-Unsorted list of students \mathbf{L}
-Find student \mathbf{S}
- Output
-True if S is in L, else False
-Pseudocode Algorithm
-Go through one by one, checking for match.
-If match, true
-If exhausted L and didn't find S, false

-Worst-case running time as function of the size of L ?

1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential

Computational Patterns

-If the number of steps to solve a problem is always the same \rightarrow Constant time: $\mathrm{O}(1)$

- If the number of steps increases similarly for each larger input \rightarrow Linear Time: $O(n)$
- Most commonly: for each item
-If the number of steps increases by some a factor of the input \rightarrow Quadradic Time: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
-Most commonly: Nested for Loops
-Two harder cases:
-Logarithmic Time: O(log n)
»We can double our input with only one more level of work
>Dividing data in "half" (or thirds, etc)
-Exponential Time: $\mathrm{O}\left(2^{\mathrm{n}}\right)$
»For each bigger input we have $2 x$ the amount of work!
»Certain forms of Tree Recursion

Example: Finding a student (by ID)

- Input
-Sorted list of students L
-Find student S
-Output : same
- Pseudocode Algorithm
-Start in middle
-If match, report true
-If exhausted, throw away half of L and check again in the middle of remaining part of L
-If nobody left, report false

- Worst-case running time as function of the size of L ?

1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential

Comparing Fibonacci

```
def iter_fib(n):
    x, y = 0, 1
    for _ in range(n):
        x, y = y, x+y
    return x
```

def fib(n): \# Recursive
if $n<2:$
return n
return fib(n-1) + fib(n - 2)

Tree Recursion

Why?

- Notice there was all this duplication in the tree?
-What is the exact order of growth?
- It's exponential.
- phi to the N , where phi is the golden ratio.

N

1
2
3
4
7
8
20

Operations
1
3
5
9
41
67
21891

Computational Structures in Data Science

UC Berkeley EECS
Lecturer
Michael Ball

Improving Efficiency

Learning Objectives

- Learn how to cache the results to save time.
- "memoization" is a specific version to avoid repeated calculations

Example

- Use a dictionary to cache results.
- This is called memoization

```
fib_results = {}
def memo_fib(n): # Look up values in our dictionary.
    global fib_results
    if n in fib_results:
        print(f'found {n} -> {fib_results[n]}')
        return fib_results[n]
    if n < 2:
        fib_results[n] = n
        return n
    result = memo_fib(n - 1) + memo_fib(n - 2)
    fib_results[n] = result
    return result
```


A Better Approach

- Python’s functools module has a `cache` function
- https://docs.python.org/3/library/functools.htm|\#module-functools
- Uses a technique called decorators that we don't cover.
from functools import cache
@cache

```
def cache_fib(n): # Recursive
    if n < 2:
            return n
```

 return cache_fib(n - 1) + cache_fib(n - 2)

What next?

- Understanding algorithmic complexity helps us know whether something is possible to solve.
- Gives us a formal reason for understanding why a program might be slow
-This is only the beginning:
-We've only talked about time complexity, but there is space complexity.
-In other words: How much memory does my program require?
-Often you can trade time for space and vice-versa
-Tools like "caching" and "memorization" do this.
-If you think this is cool take CS61B!

