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Learning Objectives

• Trees are a general version of linked lists
• Trees have a value, and are connected to "sub-trees" called branches
• We can often use recursion to process all items in a tree
– We typically have recursion inside a loop over all the tree's branches
– This is called "Depth First Search"
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Why Use Trees?

•Trees represent lots of natural structures
– A boss who has employees report to them
– Courses which belong to departments, and departments which colleges in a University
– Anything with a hierarchy, really.
» A family tree
» Biological taxonomies (Kingdom, Phylum….)
» Files and Folders
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Review: Linked Lists

• A Recursive List, sometimes called a "rlist"
• Linked lists contain other linked lists
•A series of items with two pieces:
–A value, usually called "first"
–A “pointer” to the rest of the items in the list.

•We’ll use a very small Python class “Link” to model this.
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What is a tree?

•A recursive data structure
– Almost like a linked list!
•What if a linked list could have multiple "rest" elements?
•We call these "branches". 
•Each branch is also its own Tree.
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Trees are common in Computer Science

•Trees give us really cool approaches for “divide and conquer”
– Used in every computer to speed up searching for files
– Used for modeling decision systems in AI programs
– Used for modelling the kinds of moves in a game.
•Another recursive data structure!
–We can keep practicing recursion and working with classes
– Computer sciences really like recursion. J
•Trees are a simplified form of a graph, a tool which can help us model just about anything.
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Trees: Code Overview
(Go Inspect the ipynb)
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class Tree:
def __init__(self, value, branches=()):

self.value = value
for branch in branches:

assert isinstance(branch, Tree)
self.branches = list(branches)

def __repr__(self):
if self.branches:

branches_str = ', ' + repr(self.branches)
else:

branches_str = ''
return 'Tree({0}{1})'.format(self.value, branches_str)

def is_leaf(self):
return not self.branches

def add_branch(self, tree):
assert isinstance(tree, Tree), "Each branch of a Tree must be an instance of a 

Tree"
self.branches.append(tree)
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Trees:
Practice With Recursion:
traverse_recursive
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Trees:
Counting Each Node



UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

How do we count nodes?

• The "root" or top of the tree is one node.
– (We assume we can't have a tree of 0 nodes!)
• For each subtree we… Count the nodes!
– Doesn't this sound like recursion?
• Trick: How do we group the results of recursion?
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def count_nodes(t):
"""The number of leaves in tree.

>>> count_nodes(fib_tree(5))
8
"""
if t.is_leaf():

return 1
else:

return 1 + sum(map(count_nodes, t.branches))
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Trees:
Practice With Recursion:

print_tree
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Trees:
Advanced Topics: Searching

Optional!
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Searching Trees: Two Strategies

•The searching we have been doing today is called “Depth First Search”, or DFS.
•Recursion makes the algorithm very nice.
– First: we deal with our current item, then we get to the branches.
–We always make a recursive call on the first branch
–We continue recursing until there are no more branches
–Then the function executes, and we go back “up” a level and check out the next branch.
–We sometimes say: “popping up the stack”. 
–The stack is the “stack of function calls” the computer uses to keep track of how things 
work, and you’ll learn about this in CS61B.
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Searching a Tree by level: Breadth First Search

•What if I want to check out all the values of my branches before making a recursive call?
•What if we said, you just can’t use recursion. (Sometimes, CS instructors do weird things 
like that…)
•This is used in practice for lots of cool things:
–Shortest path between two items (more of a graph and not a tree, usually). Google 
Maps uses it for routing and the algorithms that power the internet use it. 


