Computational Structures in Data Science

uc BLeerléflIJerirEECS Data Structures:
Michael Ball Trees

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

* Trees are a general version of linked lists
» Trees have a value, and are connected to “sub-trees” called branches
« We can often use recursion to process all items in a tree
- We typically have recursion inside a loop over all the tree’s branches
- This is called “Depth First Search”

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why Use Trees?

*Trees represent lots of natural structures
- A boss who has employees report to them
- Courses which belong to departments, and departments which colleges in a University
- Anything with a hierarchy, really.
>» A family tree
» Biological taxonomies (Kingdom, Phylum....)

>> Files and Folders

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Review: Linked Lists

» A Recursive List, sometimes called a “rlist”
» Linked lists contain other linked lists
*A series of items with two pieces:
-A value, usually called " first"
-A “pointer” to the rest of the items in the list.

12| «+—>»99| &> 37| &>

*We’ll use a very small Python class “Link” to model this.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

What is a tree?

A recursive data structure a
- Almost like a linked list!

*What if a linked list could have multiple “rest” element

«We call these “branches”. G 6
«Each branch is also its own Tree.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Trees are common in Computer Science

*Trees give us really cool approaches for “divide and conquer”
- Used in every computer to speed up searching for files
- Used for modeling decision systems in Al programs
- Used for modelling the kinds of moves in a game.

« Another recursive data structure!
-We can keep practicing recursion and working with classes
- Computer sciences really like recursion. ©

*Trees are a simplified form of a graph, a tool which can help us model just about anything.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Computational Structures in Data Science

UC Berkeley EECS
Lecturer
Michael Ball

Trees: Code Overview
(Go Inspect the ipynb)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

class Tree:
def __init__(self, value, branches=()):
self.value = value
for branch in branches:
assert isinstance(branch, Tree)
self.branches = list(branches)
def __repr__(self):
if self.branches:
branches_str ', ' + repr(self.branches)

else:
branches_str
return 'Tree({0}{1})'.format(self.value, branches_str)
def dis_leaf(self):
return not self.branches
def add_branch(self, tree):
assert isinstance(tree, Tree), "Each branch of a Tree must be an instance of a

Tree"
self.branches.append(tree)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball TI'EES:

Practice With Recursion:
traverse_recursive

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Computational Structures in Data Science

" ectwer Trees:
Counting Each Node

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

How do we count nodes?

« The “root” or top of the tree is one node.
- (We assume we can’t have a tree of o nodes!)
» For each subtree we... Count the nodes!
- Doesn't this sound like recursion?
* Trick: How do we group the results of recursion?

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

def count_nodes(t)

"""The number of leaves 1in tree.

>>> count_nodes(fib_tree(5))

8

if t.is_leaf()
return 1

else:

return 1 + sum(map(count_nodes, t.branches))

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball TI'EES:

Practice With Recursion:
print_tree

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball TI‘EES:

Advanced Topics: Searching
Optional!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Searching Trees: Two Strategies

*The searching we have been doing today is called “Depth First Search”, or DFS.
*Recursion makes the algorithm very nice.
- First: we deal with our current item, then we get to the branches.
-We always make a recursive call on the first branch
-We continue recursing until there are no more branches
-Then the function executes, and we go back “up” a level and check out the next branch.
-We sometimes say: “popping up the stack”.

-The stack is the “stack of function calls” the computer uses to keep track of how things
work, and you’ll learn about this in CS61B.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Searching a Tree by level: Breadth First Search

*What if | want to check out all the values of my branches before making a recursive call?

« What if we said, you just can’t use recursion. (Sometimes, CS instructors do weird things
like that...)

*This is used in practice for lots of cool things:

-Shortest path between two items (more of a graph and not a tree, usually). Google
Maps uses it for routing and the algorithms that power the internet use it.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

