
Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Data Structures:
Trees

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

• Trees are a general version of linked lists
• Trees have a value, and are connected to "sub-trees" called branches
• We can often use recursion to process all items in a tree
– We typically have recursion inside a loop over all the tree's branches
– This is called "Depth First Search"

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why Use Trees?

•Trees represent lots of natural structures
– A boss who has employees report to them
– Courses which belong to departments, and departments which colleges in a University
– Anything with a hierarchy, really.
» A family tree
» Biological taxonomies (Kingdom, Phylum….)
» Files and Folders

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Review: Linked Lists

• A Recursive List, sometimes called a "rlist"
• Linked lists contain other linked lists
•A series of items with two pieces:
–A value, usually called "first"
–A “pointer” to the rest of the items in the list.

•We’ll use a very small Python class “Link” to model this.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

What is a tree?

•A recursive data structure
– Almost like a linked list!
•What if a linked list could have multiple "rest" elements?
•We call these "branches".
•Each branch is also its own Tree.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Trees are common in Computer Science

•Trees give us really cool approaches for “divide and conquer”
– Used in every computer to speed up searching for files
– Used for modeling decision systems in AI programs
– Used for modelling the kinds of moves in a game.
•Another recursive data structure!
–We can keep practicing recursion and working with classes
– Computer sciences really like recursion. J
•Trees are a simplified form of a graph, a tool which can help us model just about anything.

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Trees: Code Overview
(Go Inspect the ipynb)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

class Tree:
def __init__(self, value, branches=()):

self.value = value
for branch in branches:

assert isinstance(branch, Tree)
self.branches = list(branches)

def __repr__(self):
if self.branches:

branches_str = ', ' + repr(self.branches)
else:

branches_str = ''
return 'Tree({0}{1})'.format(self.value, branches_str)

def is_leaf(self):
return not self.branches

def add_branch(self, tree):
assert isinstance(tree, Tree), "Each branch of a Tree must be an instance of a

Tree"
self.branches.append(tree)

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Trees:
Practice With Recursion:
traverse_recursive

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Trees:
Counting Each Node

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

How do we count nodes?

• The "root" or top of the tree is one node.
– (We assume we can't have a tree of 0 nodes!)
• For each subtree we… Count the nodes!
– Doesn't this sound like recursion?
• Trick: How do we group the results of recursion?

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

def count_nodes(t):
"""The number of leaves in tree.

>>> count_nodes(fib_tree(5))
8
"""
if t.is_leaf():

return 1
else:

return 1 + sum(map(count_nodes, t.branches))

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Trees:
Practice With Recursion:

print_tree

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Trees:
Advanced Topics: Searching

Optional!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Searching Trees: Two Strategies

•The searching we have been doing today is called “Depth First Search”, or DFS.
•Recursion makes the algorithm very nice.
– First: we deal with our current item, then we get to the branches.
–We always make a recursive call on the first branch
–We continue recursing until there are no more branches
–Then the function executes, and we go back “up” a level and check out the next branch.
–We sometimes say: “popping up the stack”.
–The stack is the “stack of function calls” the computer uses to keep track of how things
work, and you’ll learn about this in CS61B.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Searching a Tree by level: Breadth First Search

•What if I want to check out all the values of my branches before making a recursive call?
•What if we said, you just can’t use recursion. (Sometimes, CS instructors do weird things
like that…)
•This is used in practice for lots of cool things:
–Shortest path between two items (more of a graph and not a tree, usually). Google
Maps uses it for routing and the algorithms that power the internet use it.

