
Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iterators and Generators

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Source Code Pro

Today:

• Sequences vs Iterables
• Using iterators without generating all the data
• Generator concept

– Generating an iterator from iteration with yield
• Magic methods

– next
– iter

• Iterators – the iter protocol
• Getitem protocol
• Is an object iterable?
• Lazy evaluation with iterators

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Source Code Pro

Review: Why Object-Oriented Design?

• Approach creation of a class as a design problem
– Meaningful behavior => methods [& attributes]
– ADT methodology
– What’s private and hidden? vs What’s public?

• Design for inheritance
– Clean general case as foundation for specialized subclasses

• Use it to streamline development

• Anticipate exceptional cases and unforeseen problems
– try … catch
– raise / assert

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Source Code Pro

Review: What is a sequence? [Docs]

• Sequence is an "ordered set"
– list
– tuples
– ranges
– strings
• Some common operations:
– Slicing syntax: data[1:4]
– Membership: 'cs88' in courses
– Concatenation: breakfast_foods + lunch_foods + dinner_foods
– Count Items: 'cs88'.count('8')

https://docs.python.org/3/library/stdtypes.html

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Source Code Pro

Iterable - an object you can iterate over

• iterable: An object capable of yielding its members one at a time.
• iterator: An object representing a stream of data.
•We have worked with many iterables as if they were sequences

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Source Code Pro

Functions that return iterables

•map
•filter
•zip

•These objects are not sequences.
• They are generators, or iterables. A "stream" of data we can iterate over.
•Why?
–Can't directly slice into them.
–Don't know their length
• If we want to see all the elements at once, we need to explicitly call list() or tuple() on
them

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Source Code Pro

Using a Generator

•Calling list() works, but it builds the result in one go.
– This loses the benefits when we have large data!
• Generators allow us to successively generate (get it?) the next result!
data = map(lambda x: x*x, range(5))
Iterate with for loops
for point in data:

print(point)

data = map(lambda x: x*x, range(5))
next(data) # returns 0
next(data) # returns 1 …
next(data) # eventually raises StopIteration error

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Source Code Pro

Generators: turning iteration into an iterable

• Generator functions use iteration (for loops, while loops)
and the yield keyword

• Generator functions have no return statement, but they
don’t return None

• They implicitly return a generator object
• Generator objects are just iterators

def squares(n):
for i in range(n):

yield (i*i)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Source Code Pro

Nest iteration

def all_pairs(x):
for item1 in x:

for item2 in x:
yield(item1, item2)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Source Code Pro

Iterables

Demo

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Source Code Pro

Next element in generator iterable

• Iterables work because they have some "magic methods" on them. We saw magic
methods when we learned about classes,
•e.g., __init__, __repr__ and __str__.
•The first one we see for iterables is __next__

•iter() – transforms a sequence into asn iterator

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Source Code Pro

Iterators: The iter protocol

• In order to be iterable, a class must implement the iter protocol
• The iterator objects themselves are required to support the following

two methods, which together form the iterator protocol:
– __iter__() : Return the iterator object itself. This is required to

allow both containers and iterators to be used with the for and in
statements.
» This method returns an iterator object (which can be self)

– __next__() : Return the next item from the container. If there are
no further items, raise the StopIteration exception.

• Classes get to define how they are iterated over by defining these
methods

– containers (objects like lists, tuples, etc) typically define a Container
class and a separate ContainterIterator class.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Source Code Pro

Get Item protocol

•Another way an object can behave like a sequence is indexing: Using square brackets “[]”
to access specific items in an object.
•Defined by special method: __getitem__(self, i)
–Method returns the item at a given index

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Source Code Pro

Determining if an object is iterable

•from collections.abc import Iterable
• isinstance([1,2,3], Iterable)

•This is more general than checking for any list of particular type, e.g., list, tuple, string...

