Computational Structures in Data Science

Recursion

UC Berkeley EECS
Lecturer
Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Announcements

« Maps is out
- No slip days for the checkpoint, but slip days for the rest of the
project.
« Self-Check Updates:
- lam setting the deadlines approx ~36-48 hours after lecture.
- Deadlines on self-checks are for pacing!
- No more “Half-Credit” policy.
- All self-checks are still accepted until 5/5, but please dont wait that
long!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Attendance

* Passcode: fractals

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

https://go.c88c.org/here

Computational Structures in Data Science

Recursion

M. C. Escher : Drawing Hands

UC Berkeley EECS
Lecturer
Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Demo: vee / Fractals

- python3 -1 11-Recursion.py
- This uses Turtle Graphics.
-The turtle module is really cool, but not something you need to learn
vee is the one recursive problem that doesn't have a base case
- But fractals in general are a fun way to visualize self-similar structures

Use the following keys to play with the demo
- Space to draw
- Cto Clear
- Up to add “vee” to the functions list
- Down to remove the “vee” functions from the list.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

https://snap.berkeley.edu/collection?username=nathalierun&collection=Fractals
https://snap.berkeley.edu/collection?username=nathalierun&collection=Vee&page_number=2
https://snap.berkeley.edu/collection?username=nathalierun&collection=Fractals
https://snap.berkeley.edu/collection?username=snapcloud&collection=Fractals

Why Recursion?

* Recursive structures exist (sometimes hidden) in nature and therefore in data!

» It’s mentally and sometimes computationally more efficient to process recursive
structures using recursion.

« Sometimes, the recursive definition is easier to understand or write, even if it is
computationally slower.

bJ6I6S88 Sp1o Ls UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Today: Recursion

re-cur-sion
/ri'karZHan/ ©

noun MATHEMATICS LINGUISTICS

the repeated application of a recursive procedure or definition.

. arecursive definition.
plural noun: recursions

re-cur-sive
/ri'karsiv/ ¥

adjective

characterized by recurrence or repetition, in particular.

+ MATHEMATICS LINGUISTICS
relating to or involving the repeated application of a rule, definition, or procedure to
successive results.

« COMPUTING

relating to or involving a program or routine of which a part requires the application
of the whole, so that its explicit interpretation requires in general many successive
executions.

« Recursive function calls itself, directly or indirectly

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Demo: Countdown

def countdown(n):
if n == 0:
print('Blastoff!"')
else:
print(n)
countdown(n - 1)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org 3

The Recursive Process

Recursive solutions involve two major parts:

= Base case(s), the problem is simple enough to be
solved directly

o Recursive case(s). A recursive case has three
components:

- Divide the problem into one or more simpler or smaller
parts

- Invoke the function (recursively) on each part, and

- Combine the solutions of the parts into a solution for the
problem.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Computational Structures in Data Science

Recursion

UC Berkeley EECS
Lecturer
Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Learning Objectives

« Compare Recursion and Iteration to each other

- Translate some simple functions from one method to another

« Write a recursive function
-~ Understand the base case and a recursive case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Palindromes

« Palindromes are the same word forwards and backwards.

« Python has some tricks, but how could we build this?

- palindrome = lambda w: w == w[::-1]

~-[::-1] is aslicing shortcut [0:1len(w) : -1] to reverse items.
 Let’s write Reverse:

def reverse_while(s):
mmnn

>>> reverse_while('hello')

'olleh'
def reverse(s): v

result = "'

result = "' while s:

. first = s[0]
for letter in s: s = s[1:] # remove the first letter
result = first + result
result = letter + result return result

return result

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Fun Palindromes

« C88C

* racecar
 LOL

* radar

* aman a plan a canal panama

+ aibohphobia &

- The fear of palindromes.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

https://czechtheworld.com/best-palindromes/
https://czechtheworld.com/best-palindromes/

Writing Reverse Recursively

def reverse(s):
if not s:
return '
return 'TODO'

def palindrome(word) :
return word == reverse(word)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

How should reverse work?

* Our algorithm in words:
- Take the first letter, put it at the end
- The beginning of the string is the reverse of the rest.

reverse('ABC')

> reverse('BC') + 'A'

> reverse('C') + 'B' + 'A
> 'C'" + 'B'" + A

> '"CBA'

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

reverse recursive

def reverse(s):
if not s:
return "'

def palindrome(word) :
return word == reverse(word)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Attendance

* Passcode: fractals

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

https://go.c88c.org/here

Iteration vs Recursion: Sum Numbers

For loop:

def sum(n):
s=0
for i in range(O,n+1):
S=S+1
return s

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

While loop:

def sum(n):
s=0
=0
while i<n:
i=+1
S=S+1
return s

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

Recursion:
def sum(n):
if n == 0:
return 0
return n+sum(n-1)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Cheating!
Sometimes it’s best to just use a formula! But that’s not always the point. ©

def sum(n):
return (n x (n + 1)) / 2

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

21

The Recursive Process

= Recursive solutions involve two major parts:

o Base case(s), the problem is simple enough to be solved directly
o Recursive case(s). A recursive case has three components:

= Divide the problem into one or more simpler or smaller parts
= Invoke the function (recursively) on each part, and
= Combine the solutions of the parts into a solution for the problem.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

22

Recall: Iteration

1. Initialize the “base” case of no iterations

]

def sum_of_sq es(n) . 2. Starting value

accum = 0

for i in range(l,n+1):
accum =_accum + %17

return accum

3. Ending value

4. New loop variable value

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recursion Key concepts - by example

1. Test for simple “base” case 2. Solution in simple “base” case

-\ /

def suﬁ\ff_squares(n):
if n < 1:
return 0
else:
return sgm_of_squares(n—l) + N*x%x2

/ \

3. Assume recusive solution to
simpler problem

4.”Combine” the simpler part of the
solution, with the recursive case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

In words

« The sum of no numbers is zero
« The sum of 12 through n2is the
- sum of 12 through (n-1)?

- plus n?

def sum_of_squares(n):
if n < 1:
return 0
else:
return sum_of_squares(n-1) + nxx2

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why does it work

sum_of_squares(3)

sum_of_squares(3) => sum_of_squares(2) + 3%*2

=> sum_of_squares(l) + 2*x%*2 + 3%*2

=> sum_of_squares(0) + 1x*2 + 2%*x2 + 3%x%2
=> 0 + 1x*x2 + 2%%2 + 3%%2 = 14

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Review: Functions

def <function name> (<argument list>) :

Lo

return eXpI’eSSiOﬂ

def concat(strl, str2):
return strl+str2;

concat(“Hello”,”World”)

* Generalizes an expression or set of statements to
apply to lots of instances of the problem

« A function should do one thing well

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

How does it work?

Each recursive call gets its own local variables
- Just like any other function call

Computes its result (possibly using additional calls)
- Just like any other function call

Returns its result and returns control to its caller
- Just like any other function call

The function that is called happens to be itself

- Called on a simpler problem
- Eventually stops on the simple base case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Questions

* In what order do we sum the squares ?

« How does this compare to iterative approach ?

accum = 0

return accum

def sum_of_squares(n):

for i in range(l,n+1):
accum = accum + *i

def sum_of_squares(n):
if n < 1:
return 0
else:
return sum_of_squares(n-1) + n*xx*2

def sum_of_squares(n):
if n < 1:
return 0
else:
return nxx2 + sum_of_squares(n-1)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Trust ...

 The recursive “leap of faith” works as long as we
hit the base case eventually

What happens if we don’t?

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why Recursion?

- “After Abstraction, Recursion is probably the 2" biggest idea
in this course”

* “It’s tremendously useful when the problem is self-similar”

* “It’s no more powerful than iteration, but often leads to
more concise & better code”

* “It’s more ‘mathematical’™”
* “It embodies the beauty and joy of computing”

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recursion (unwanted)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Example I

List all items on your hard disk

== gravelleconsulting * Files
= scripts
B diji
~[~ dojo
~[=* doijox
widgets
= css
[StockInfo.css /\
= imaqges
----- 47 crude_oil_179x98.png Recursion!
~~~~~ ._1‘]' qasoline_179x93.png
-4 gold_179x98.png
L g‘r natural_gas_179x98.png
== templates
2] Stockinfa.html
- stockWwidget. html

* Folders contain
- Files
- Folders

m

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org



Another Example

indexing an element of a sequence

def first(s):
"""Return t St element in a sequence."""

return s[0]

def rest(s):
"""Return all elements in a sequence after the first"""

return s[1:]

Slicing a sequence of elements

def min_r(s):
“PPReturn minimum value in a sequence.”””
if

else:

» Recursion over sequence length, rather than
number magnitude

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

bjegS88 Sp1g Ls 37



Why Recursion? More Reasons

* Recursive structures exist (sometimes hidden) in nature and therefore in data!

* It’s mentally and sometimes computationally more efficient to process recursive
structures using recursion.

bJ6I6S88 Sp1o Ls UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org 40



