
Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Recursion

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Announcements

• Maps is out
– No slip days for the checkpoint, but slip days for the rest of the

project.
• Self-Check Updates:

– I am setting the deadlines approx ~36-48 hours after lecture.
– Deadlines on self-checks are for pacing!
– No more "Half-Credit" policy.
– All self-checks are still accepted until 5/5, but please don't wait that
long!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Attendance

• https://go.c88c.org/here
• Passcode: fractals

3

https://go.c88c.org/here

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Recursion
M. C. Escher : Drawing Hands

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Demo: vee / Fractals

• python3 –i 11-Recursion.py
• This uses Turtle Graphics.

–The turtle module is really cool, but not something you need to learn
• vee is the one recursive problem that doesn't have a base case

– But fractals in general are a fun way to visualize self-similar structures
• Use the following keys to play with the demo

– Space to draw
–C to Clear
–Up to add "vee" to the functions list
–Down to remove the "vee" functions from the list.

• Some cool variations on vee, seen in Snap! (the language of CS10)
• More Fractals

https://snap.berkeley.edu/collection?username=nathalierun&collection=Fractals
https://snap.berkeley.edu/collection?username=nathalierun&collection=Vee&page_number=2
https://snap.berkeley.edu/collection?username=nathalierun&collection=Fractals
https://snap.berkeley.edu/collection?username=snapcloud&collection=Fractals

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why Recursion?

• Recursive structures exist (sometimes hidden) in nature and therefore in data!
• It’s mentally and sometimes computationally more efficient to process recursive

structures using recursion.
• Sometimes, the recursive definition is easier to understand or write, even if it is

computationally slower.

6UCB CS88 Sp19 L52/25/19

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Today: Recursion

• Recursive function calls itself, directly or indirectly

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Demo: Countdown

def countdown(n):
if n == 0:

print('Blastoff!')
else:

print(n)
countdown(n - 1)

8

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

The Recursive Process

Recursive solutions involve two major parts:
ú Base case(s), the problem is simple enough to be

solved directly
ú Recursive case(s). A recursive case has three

components:
 Divide the problem into one or more simpler or smaller

parts
 Invoke the function (recursively) on each part, and
 Combine the solutions of the parts into a solution for the

problem.

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Recursion

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

• Compare Recursion and Iteration to each other
–Translate some simple functions from one method to another

• Write a recursive function
–Understand the base case and a recursive case

11

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Palindromes

• Palindromes are the same word forwards and backwards.
• Python has some tricks, but how could we build this?

– palindrome = lambda w: w == w[::-1]
–[::-1] is a slicing shortcut [0:len(w):-1] to reverse items.

• Let's write Reverse:

def reverse(s):
result = ''
for letter in s:

result = letter + result
return result

def reverse_while(s):
"""
>>> reverse_while('hello')
'olleh'
"""
result = ''
while s:

first = s[0]
s = s[1:] # remove the first letter
result = first + result

return result

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Fun Palindromes

• C88C
• racecar
• LOL
• radar
• a man a plan a canal panama
• aibohphobia😈

– The fear of palindromes.

• https://czechtheworld.com/best-palindromes/#palindrome-
words

13

https://czechtheworld.com/best-palindromes/
https://czechtheworld.com/best-palindromes/

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Writing Reverse Recursively

def reverse(s):
if not s:

return ''
return 'TODO'

def palindrome(word):
return word == reverse(word)

14

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

How should reverse work?

• Our algorithm in words:
– Take the first letter, put it at the end
– The beginning of the string is the reverse of the rest.

reverse('ABC')
→ reverse('BC') + 'A'
→ reverse('C') + 'B' + 'A
→ 'C' + 'B' + 'A
→ 'CBA'

15

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

reverse recursive

16

def reverse(s):
if not s:

return ''
return reverse(s[1:]) + s[0]

def palindrome(word):
return word == reverse(word)

Recursive Case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Attendance

• https://go.c88c.org/here
• Passcode: fractals

17

https://go.c88c.org/here

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

For loop:

def sum(n):
s=0
for i in range(0,n+1):

s=s+i
return s

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

def sum(n):
s=0
i=0
while i<n:

i=i+1
s=s+i

return s

While loop:

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

def sum(n):
if n == 0:

return 0
return n+sum(n-1)

Recursion:

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Cheating!

21

def sum(n):
return (n * (n + 1)) / 2

Sometimes it’s best to just use a formula! But that’s not always the point. J

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

The Recursive Process

§ Recursive solutions involve two major parts:
ú Base case(s), the problem is simple enough to be solved directly
ú Recursive case(s). A recursive case has three components:

 Divide the problem into one or more simpler or smaller parts
 Invoke the function (recursively) on each part, and
 Combine the solutions of the parts into a solution for the problem.

22

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recall: Iteration

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i*i
return accum

1. Initialize the “base” case of no iterations

2. Starting value

3. Ending value

4. New loop variable value

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recursion Key concepts – by example

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

1. Test for simple “base” case 2. Solution in simple “base” case

3. Assume recusive solution to
simpler problem 4. ”Combine” the simpler part of the

solution, with the recursive case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

In words

• The sum of no numbers is zero
• The sum of 12 through n2 is the

– sum of 12 through (n-1)2

– plus n2

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why does it work

sum_of_squares(3)

sum_of_squares(3) => sum_of_squares(2) + 3**2
=> sum_of_squares(1) + 2**2 + 3**2
=> sum_of_squares(0) + 1**2 + 2**2 + 3**2
=> 0 + 1**2 + 2**2 + 3**2 = 14

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Review: Functions

• Generalizes an expression or set of statements to
apply to lots of instances of the problem
• A function should do one thing well

expression

def <function name> (<argument list>) :

return

def concat(str1, str2):
return str1+str2;

concat(“Hello”,”World”)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

How does it work?

• Each recursive call gets its own local variables
– Just like any other function call

• Computes its result (possibly using additional calls)
– Just like any other function call

• Returns its result and returns control to its caller
– Just like any other function call

• The function that is called happens to be itself
– Called on a simpler problem
– Eventually stops on the simple base case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Questions

• In what order do we sum the squares ?
• How does this compare to iterative approach ?

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i*i
return accum

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

def sum_of_squares(n):
if n < 1:

return 0
else:

return n**2 + sum_of_squares(n-1)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Trust …

• The recursive “leap of faith” works as long as we
hit the base case eventually

What happens if we don’t?

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why Recursion?

• “After Abstraction, Recursion is probably the 2nd biggest idea
in this course”

• “It’s tremendously useful when the problem is self-similar”
• “It’s no more powerful than iteration, but often leads to

more concise & better code”
• “It’s more ‘mathematical’”
• “It embodies the beauty and joy of computing”
• …

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recursion (unwanted)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Example I

List all items on your hard disk

• Files
• Folders contain

– Files
– Folders

Recursion!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Another Example

• Recursion over sequence length, rather than
number magnitude

37UCB CS88 Sp19 L52/25/19

def first(s):
"""Return the first element in a sequence."""
return s[0]

def rest(s):
"""Return all elements in a sequence after the first"""
return s[1:]

def min_r(s):
“””Return minimum value in a sequence.”””
if len(s) == 1:

return first(s)
else:

return min(first(s), min_r(rest(s)))

Base Case

Recursive Case

indexing an element of a sequence

Slicing a sequence of elements

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why Recursion? More Reasons

• Recursive structures exist (sometimes hidden) in nature and therefore in data!
• It’s mentally and sometimes computationally more efficient to process recursive

structures using recursion.

40UCB CS88 Sp19 L52/25/19

