
Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Data Structures:
Linked Lists

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Announcements

• Welcome back from break! J
• Remainder of the semester:
– Ants project out soon
– Practice with Object-Oriented Programming
– Partners recommended! But don’t trade parts.
• Chat: https://go.c88c.org/chat
•Attedance Passcode: spring
– https://go.c88c.org/here

https://go.c88c.org/chat
https://go.c88c.org/here

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Where We’re Going

• For now – we’ve learned most of the basics of Python!
– There are plenty of Python we don’t see in CS88
• We’ll be applying OOP principles to explore new topics.
• We’re going to focus on storing / organizing data
– Lists, Tuples, and Dictionaries: Data Structures you already know!
• BUT: How do we build our own?
– We’ll build our own lists first, then talk about trees and other ways of organizing data
• Last few lectures: Switch to SQL

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why "Data Structures"? (Next Few lectures)

•Data Structures
–OOP helps us organize our programs
–Data Structures help us organize our data!
–You already know lists and dictionaries!
–We’ll see a new one today
• Enjoy this stuff? Take 61B!
• Find it challenging? Don’t worry! It’s a different way of thinking.

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Linked Lists

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Data Structures

•A data structure is a way to organize or group a bunch of independent pieces of data.
–Lists (arrays)
–Dictionaries
–Tuples
•A class, on its own, is not necessarily a data structure, it represents a new data type.
–a "car" or a "person" is an instance of that data type.
– Lists, Dicts, etc are also data types; their goal is to organize other data.
•These are common patterns that can be used to solve a wide variety of problems.
•Sometimes we're giving structure to make it easier as a programmer, sometimes we're
trying to be fast or efficient.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Linked Lists

• A Recursive List, sometimes called a "rlist"
• Linked lists contain other linked lists
•A series of items with two pieces:
–A value, usually called "first"
–A “pointer” to the rest of the items in the list.

•We’ll use a very small Python class “Link” to model this.
•Link(12, Link(99, Link(37, Link.empty)))

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

What's Needed For a Linked List?

• first
• rest
• An idea of “empty”
• Nothing else is necessary
• __repr__, __len__ methods are all useful shortcuts and useful
recursion practice.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

The Link Class

class Link:
empty = ()
def __init__(self, first, rest=empty):

self.first = first
self.rest = rest

That's all we need!
• We can add a __repr__ method, length, etc.
• Use an empty tuple for clarity / easier than None.
– () has lots of useful methods defined, like len()

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recursion Is Implicit

self.rest

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iterating or Processing a Linked List

• Our base case or stopping condition?
– Linked List is Empty!
• We can use recursion or iteration.
– Which is “better”?
– Depends on the problem we are trying to solve!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iterating Over All Items in Linked List

def print_link(link):
if not link:

return
print(link.first)
print_link(link.rest)

• Base Case: No more items
• Do Action
• Recurse on the rest of the list

def print_link(link):
if not link:

return
item = link
while item:

print(item.first)
item = item.rest

• Handle the empty list
• Keep track of current item
• Update item to be the next in
sequence.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Demo – See the Notebook

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why are linked lists useful?

• Honestly, a list() is easier most of the time
– Python handles all the hard details!
– When data gets large, there are lots of edge cases.
• In terms of efficiency: Linked list make it fast to move items around,
inserts and deletes.
– But they are slower to finding any single item.
• In Ants Project: You'll see a list of `Place` objects which are linked
together via an entrance and an exit.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Uses for a Linked List

• Modeling a Polynomial Equation
– each item is (coefficient, exponent, next_term)
• Items in a music playlist
– each item is a (song, next_song) pair
– easy to add/remove items
» Specifically: often want to remove the first item

• Model real-world relationships
– Anything that is a "chain" is a good option
– Next week: We'll extend this idea to "trees"

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Efficiency of Linked Lists vs Lists

• Linked Lists generally use less memory.
• Linked Lists:
– Once you've found an item, inserting / removing is easy, O(1)
– Finding anything other than the first/last item is O(n)
• "Regular" Lists:
– Inserting / Removing items, other than the last is O(n) – due to internal copying
– Finding any random item is O(1).

• What if you need to iterate over all items in order?
– O(n) in both cases

