Computational Structures in Data Science

Environments and Lambdas

Berkeley

©@O®SO©

Functional Sequence (List) Operations

-Goal: Transform a sequence, and return a new result
-We'll use 3 functions that are hallmarks of functional programming
-Each of these takes in a function and a sequence as arguments

List: same length,

Transform every "Anything", a new

map tam 1 (each item) tarm but possibly new
values
L List: possibly fewer
filter]Ezeevtvgﬁtzrlg s 1 (each item) A Boolean items, values are
the same
"Combine" items 2 (current item, and Type shoulo - .
reduce . match the type A "single" item
together the previous result) aach iterm

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Functions That Return Functions

Berkeley

©@O®SO©

Learning Objectives

-Learn how to use and create higher order functions:
-Functions can be used as data

-Functions can accept a function as an argument
-Functions can return a new function

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Review: What is a Higher Order Function?

-A function that takes in another function as an argument

OR

A function that returns a function as a result.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Higher Order Functions

« A function that returns (makes) a function

def leq maker(c):
def leg(val):
return val <= c
return leqg

>>> leq maker (3)
<function leq maker.<locals>.leq at 0x1019d8c80>

>>> leq maker (3) (4)
False

>>> [x for x in range(7) 1f leqg maker (3) (x)]
(o, 1, 2, 3]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Inner or Nested Functions

- Inner functions are scoped - they are not visible to the outside
world

- But they can be returned and thus called later on.

- Like a "regular" function, they have access to all the data (including
arguments) of their "parent" or "container" function.

- This can become messy!
/N the next section, we will formalize the rules.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Environment Diagrams

Berkeley

©@O®SO©

Why focus on environments?

- Environments are a simplification of why Python actually does
- Focus on building intuition for what will happen when you run code
- Sometimes tedious, but the practice helps you solve hard questions
- In 88C (or 61A), even our hard questions are pretty short
- Outside of class, things can get complex quickly.

- Every programming language is a bit different, but these rules are
quite common

- | understand if you don't like them now. ©

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Python Tutor Example #1

a = "chipotle"

b =5>3
c = 8
def foo(c):
return ¢ - 5
def bar():
if b:

a = "taco bell"
resultl = foo(10)

result2 = bar()

- Primitives and Functions: Environment Diagram Python Tutor:

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://pythontutor.com/composingprograms.html

Environment Diagrams

-Organizational tools that help you understand code
-Terminology:

‘Frame: keeps track of variable-to-value bindings, each function call
has a frame

-Global Frame: global for short, the starting frame of all python
programs, doesn't correspond to a specific function

-Parent Frame: The frame of where a function is defined (default
parent frame is global)

‘Frame number: What we use to keep track of frames, 1, 12, f3, etc
‘Variable vs Value: x = 1. x is the variable, 1 is the value

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Environment Diagrams Rules

1. Always draw the global frame first

2. When evaluating assignments (lines with single equal), always evaluate right
side first

3. When you CALL a function MAKE A NEW FRAME!

4. When assigning a primitive expression (number, boolean, string) write the
value in the box

5. When assigning anything else (lists, functions, etc.), draw an arrow to the
value

6. When calling a function, name the frame with the intrinsic name - the name
of the function that variable points to

7. The parent frame of a function is the frame in which it was defined in
(default parent frame is global)

8. If the value for a variable doesn't exist in the current frame, search in the
parent frame

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Python Tutor Example #2

def make_adder (n):
def adder(k):
return kK + n

return adder

n = 10
add_2 = make_adder(2)
x = add_2(5)

-make_adder Higher Order Function: Environment Diagram Python Tutor Link

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://pythontutor.com/composingprograms.html

Python Tutor Example #3

add_2 = make_adder(2)
add_3 = make_adder (3)

X = add_2(2)
def compose(f, g):
def h(x):
return f(g(x))
return h
add_5 = compose(add_2, add_3)
z = add_5(x)

- Compose Python Tutor Link

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://pythontutor.com/composingprograms.html

Demo

Example 1:
-make_adder Higher Order Function: Environment Diagram Python Tutor Link

Example 2:
- Primitives and Functions: Environment Diagram Python Tutor:

Example 3:
- Compose Python Tutor Link

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://pythontutor.com/composingprograms.html
https://pythontutor.com/composingprograms.html
https://pythontutor.com/composingprograms.html

Environment Diagram Tips [/ Links

NEVER draw an arrow from one variable to another.
«Jseful Resources:

-http://markmiyashita.com/cs61a/environment_diagrams/rules_of_e
nvironment_diagrams/

-http://albertwu.org/cs61a/notes/environments.ntmi

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Why focus on environments?

- Environments are a simplification of why Python actually does
- Focus on building intuition for what will happen when you run code
- Sometimes tedious, but the practice helps you solve hard questions
- In 88C (or 61A), even our hard questions are pretty short
- Outside of class, things can get complex quickly.

- Every programming language is a bit different, but these rules are
quite common

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Lambda Expressions

Berkeley

©@O®SO©

Learning Objectives

-Lambda are anonymous functions, which are expressions

-Don't use return, lambdas always return the value of the
expression.

-They are typically short and concise

-They don't have an “intrinsic” name when using an environment
diagram.
- Their name is the character 4

Why Use Lambda?

- We often can use the behavior of simple function!
- Using functions gives us flexibility

- "Inline" functions are faster/easier to write, and sometimes require
less reading.

- They're not "reusable", but that's OK!

21

Function expression

“anonymous” function creation
lambda <arg or arg_tuple> : <expression using args>

Expression, not a statement, no return or any other statement

add one = lambda v : v + 1 def add one(v):
return v + 1

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

>>> def make adder (1) :

return lambda x: x+1

>>> make adder (3)

<function make adder.<locals>.<lambda> at
0x10073c510>

>>> make adder (3) (4)
]

>>> list(maD(makemggﬁg???y@w?T???ﬁﬁfﬁ))

Lambda with HOF's

« A function that returns (makes) a function

def leq maker(c):
return lambda val: val <= c

>>> leq maker (3)
<function leq maker.<locals>.<lambda> at 0x1019d8c80>

>>> leq maker (3) (4)
False

>>> filter (leq maker(3), [0,1,2,3,4,5,6,7])
(o, 1, 2, 3]

More Python HOF's

. sorted - sorts a list of data
« MIN
e Max

All three take in an optional argument called key which allows us to control how
the function performs its action. They are more similar to filter than map.

max([1,2,3,4,5], key = lambda x: -x)
key is the name of the argument and a lambda is its value.

fruits = ["pear", "grape'", "KIWI", "APPLE", "melon",
"ORANGE'", "BANANA"]

sorted(key=1lambda x: x.lower())

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

It is often useful to sort data.

-What property should we sort on?
- Numbers: We can clearly sort.
‘What about the length of a word?
‘Alphabetically?

‘What about sorting a complex data set, but 1 attribute?

- Image | have a list of courses: | could sort be course name, number of units,
start time, etc.

-Python provides 1 function which allows us to provide a lambda to
control its behavior

Sorting with Lambdas

>>> sorted([1,2,3,4,5], key = lambda x: x)

[1, 2, 3, 4, 5]
>>> sorted([1,2,3,4,5], key = lambda x: -x)

[5, 4, 3, 2, 1]
Nonsensical pairing of numbers and words..
>>> sorted([(2, "hi"), (1, "how"), (5, '"goes"), (7, "it")],
key = lambda x:x[0])
[(1, 'how'), (2, 'hi'), (5, 'goes'), (7, 'it')]
>>> sorted([(2, "hi"), (1, "how"), (5, '"goes"), (7, "it")],
key = lambda x:x[1])
[(7, 'it'), (5, 'goes'), (2, 'hi'), (1, '"how')]
>>> sorted([(2,"hi"),(1,"how"), (5,"goes"), (7,"it")],
key = lambda x: len(x[1]))
[(7, 'it"'), (2, 'hi'), (1, 'how'), (5, 'goes')]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Environment Diagrams

Berkeley

©@O®SO©

Revisiting Environments

def make_adder(n):

return lambda k: k + n

add _2 = make_adder(2)
add _3 = make_adder (3)
X = add_2(5)
y = add_3(x)

29

Revisiting Environments: compose w/lambda

def make_adder(n):

return lambda k: k + n
def compose(f, g):

return lambda x: f(g(x))

add_2 = make_adder (2)
add_3 = make_adder (3)
add_5 = compose(add_2, add_3)

z = add_5(x)

X = add_2(2)

30

Environment Diagrams

-Organizational tools that help you understand code
-Terminology:

‘Frame: keeps track of variable-to-value bindings, each function call
has a frame

-Global Frame: global for short, the starting frame of all python
programs, doesn't correspond to a specific function

-Parent Frame: The frame of where a function is defined (default
parent frame is global)

‘Frame number: What we use to keep track of frames, 1, 12, f3, etc
‘Variable vs Value: x = 1. x is the variable, 1 is the value

Environment Diagrams Rules

1. Always draw the global frame first

2. When evaluating assignments (lines with single equal), always evaluate right
side first

3. When you CALL a function MAKE A NEW FRAME!

4. When assigning a primitive expression (number, boolean, string) write the
value in the box

5. When assigning anything else (lists, functions, etc.), draw an arrow to the
value

6. When calling a function, name the frame with the intrinsic name - the name
of the function that variable points to

7. The parent frame of a function is the frame in which it was defined in
(default parent frame is global)

8. If the value for a variable doesn't exist in the current frame, search in the
parent frame

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo

Example 1:
-make_adder Higher Order Function: Environment Diagram Python Tutor Link

Example 2:
- Compose Python Tutor Link

https://pythontutor.com/cp/composingprograms.html
https://pythontutor.com/cp/composingprograms.html

