
Computational Structures in Data Science
Recursio

n

Announcements

•Midterm + Schedule updates
• Midterm covers all material this week.
• No lecture day after midterm
• Next Monday: Review recursion + MT

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science
Recursi

on
M. C. Escher : Drawing Hands

Demo: vee / Fractals

• python3 –i 11-Recursion.py
• This uses Turtle Graphics.
• The turtle module is really cool, but not something you need to learn
• vee is the one recursive problem that doesn't have a base case
• But fractals in general are a fun way to visualize self-similar structures
• Use the following keys to play with the demo
• Space to draw
• C to Clear
• Up to add "vee" to the functions list
• Down to remove the "vee" functions from the list.
• Some cool variations on vee, seen in Snap! (the language of CS10)
• More Fractals

https://snap.berkeley.edu/collection?username=nathalierun&collection=Fractals
https://snap.berkeley.edu/collection?username=nathalierun&collection=Vee&page_number=2
https://snap.berkeley.edu/collection?username=nathalierun&collection=Fractals
https://snap.berkeley.edu/collection?username=snapcloud&collection=Fractals

Why Recursion?

• Recursive structures exist (sometimes
hidden) in nature and therefore in data!
• It’s mentally and sometimes
computationally more efficient to
process recursive structures using
recursion.
• Sometimes, the recursive definition is
easier to understand or write, even if it
is computationally slower.
• Fractals are definitely easily to think of
recursively!

Today: Recursion

• Recursive function calls itself, directly or indirectly

Recursion In Practice

• We will use a function to solve smaller sub-problems
• Compared to a for-loop, while loop, we will not directly
specify how many times we need to make a function call.

Demo: Countdown

def countdown(n):
if n == 0:

print('Blastoff!')
else:

… what goes here?

8

Demo: Countdown

def countdown(n):
if n == 0:

print('Blastoff!')
else:

print(n)
countdown(n - 1)

9

The Recursive Process

Recursive solutions involve two major parts:
ú Base case(s), the problem is simple enough to be

solved directly
ú Recursive case(s). A recursive case has three

components:
 Divide the problem into one or more simpler or

smaller parts
 Invoke the function (recursively) on each part, and
 Combine the solutions of the parts into a solution for

the problem.

Computational Structures in Data Science

Recursion

Learning Objectives

•Compare Recursion and Iteration to each other
•Translate some simple functions from one method to another
•Write a recursive function
•Understand the base case and a recursive case

12

Palindromes

•Palindromes are the same word forwards and backwards.
•Python has some tricks, but how could we build this?
• palindrome = lambda w: w == w[::-1]
•[::-1] is a slicing shortcut [0:len(w):-1] to reverse items.
•Let's write Reverse:

def reverse(s):
result = ''
for letter in s:

result = letter + result
return result

def reverse_while(s):
"""
>>> reverse_while('hello')
'olleh'
"""
result = ''
while s:

first = s[0]
s = s[1:] # remove the first letter
result = first + result

return result

Fun Palindromes

•C88C
•racecar
•LOL
•radar
•a man a plan a canal panama
•aibohphobia😈
• The fear of palindromes.

•https://czechtheworld.com/best-
palindromes/#palindrome-words

14

https://czechtheworld.com/best-palindromes/
https://czechtheworld.com/best-palindromes/

Writing Reverse Recursively

def reverse(s):
if not s:

return ''
return 'TODO'

def palindrome(word):
return word == reverse(word)

15

How should reverse work?

•Our algorithm in words:
• Take the first letter, put it at the end
• The beginning of the string is the reverse of the rest.

reverse('ABC')
→ reverse('BC') + 'A'
→ reverse('C') + 'B' + 'A
→ 'C' + 'B' + 'A
→ 'CBA'

16

reverse recursive

17

def reverse(s):
if not s:

return ''
return reverse(s[1:]) + s[0]

def palindrome(word):
return word == reverse(word)

Recursive Case

Iteration vs Recursion: Sum Numbers

For loop:
def sum(n):

s=0
for i in range(0,n+1):

s=s+i
return s

Iteration vs Recursion: Sum Numbers

def sum(n):
s=0
i=0
while i<n:

i=i+1
s=s+i

return s

While loop:

Iteration vs Recursion: Sum Numbers

def sum(n):
if n == 0:

return 0
return n+sum(n-1)

Recursion:

Iteration vs Recursion: Cheating!

21

def sum(n):
return (n * (n + 1)) / 2

Sometimes it’s best to just use a formula! But that’s not always the point. J

The Recursive Process

Recursive solutions involve two major parts:
ú Base case(s), the problem is simple enough to be

solved directly
ú Recursive case(s). A recursive case has three

components:
 Divide the problem into one or more simpler or smaller

parts
 Invoke the function (recursively) on each part, and
 Combine the solutions of the parts into a solution for the

problem.

Review: Functions

•Generalizes an expression or set of
statements to apply to lots of instances of the
problem
•A function should do one thing well

expression

def <function name> (<argument list>) :

return

def concat(str1, str2):
return str1+str2;

concat(“Hello”,”World”)

How does it work?

•Each recursive call gets its own local variables
• Just like any other function call
•Computes its result (possibly using additional calls)
• Just like any other function call
•Returns its result and returns control to its caller
• Just like any other function call
•The function that is called happens to be itself
•Called on a simpler problem
•Eventually stops on the simple base case

Another Example

•Recursion over sequence length

def first(s):
"""Return the first element in a sequence."""
return s[0]

def rest(s):
"""Return all elements in a sequence after the first"""
return s[1:]

def min_r(s):
“””Return minimum value in a sequence.”””
if len(s) == 1:

return first(s)
else:

return min(first(s), min_r(rest(s)))

Base Case

Recursive Case

indexing an element of a sequence

Slicing a sequence of elements

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i*i
return accum

1. Initialize the “base” case of no iterations

2. Starting value

3. Ending value

4. New loop variable value

Recall: Iteration

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

1. Test for simple “base” case 2. Solution in simple “base” case

3. Assume recusive solution to
simpler problem 4. ”Combine” the simpler part of

the solution, with the recursive
case

Recursion Key concepts – by example

In words

•The sum of no numbers is zero
•The sum of 12 through n2 is the
• sum of 12 through (n-1)2

• plus n2def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

sum_of_squares(3)

sum_of_squares(3) => sum_of_squares(2) + 3**2
=> sum_of_squares(1) + 2**2 + 3**2
=> sum_of_squares(0) + 1**2 + 2**2 + 3**2
=> 0 + 1**2 + 2**2 + 3**2 = 14

Why does it work

Questions

• In what order do we sum the squares ?
•How does this compare to iterative approach ?

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i*i
return accum

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

def sum_of_squares(n):
if n < 1:

return 0
else:

return n**2 + sum_of_squares(n-1)

Trust …

•The recursive “leap of faith” works as long as we hit the base case
eventually

•What happens if we don’t?

Recursion (unwanted)

Why Recursion?

• “After Abstraction, Recursion is probably the 2nd biggest
idea in this course”
• “It’s tremendously useful when the problem is self-
similar”
• “It’s no more powerful than iteration, but often leads to
more concise & better code”
• “It’s more ‘mathematical’”
• “It embodies the beauty and joy of computing”
•…

Example I

List all items on your hard disk

• Files
• Folders contain
• Files
• Folders

Recursion!

Why Recursion? More Reasons

• Recursive structures exist (sometimes hidden) in nature and
therefore in data!
• It’s mentally and sometimes computationally more efficient
to process recursive structures using recursion.

