Data Science

111

1 Structures

Computationa

Recursion

Drawing Hands

Escher :

C

M

©@O®SO©

The Recursive Process

Recursive solutions involve two major parts:

= Base case(s), the problem is simple enough to be
solved directly

= Recursive case(s). A recursive case has three
components:

- Divide the problem into one or more simpler or
smaller parts

- Invoke the function (recursively) on each part, and

- Combine the solutions of the parts into a solution for
the problem.

Why learn recursion?

- Recursive data is all around us!

- Take CS61B (data structures), CS70 (discrete math), C5164 (Programming
Languages), Data 101 (Data Eng) for more examples where you'll encounter
recursion

- Trees (post-midterm) and Graphs are structures which are recursive in nature.

- E.g. A social network is a graph of friends with connections to other friends,
with connections to other friends.

- Analyzing "chains" of data, can benefit from recursion
- Next Lecture: Problems that "branch" out:

. generating subsets and permutations

- calculating Fibonacci numbers

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Palindromes

©@O®SO©

Learning Objectives

- Compare Recursion and Iteration to each other

- Translate some simple functions from one method to another
- Write a recursive function

- Understand the base case and a recursive case

Palindromes

- Palindromes are the same word forwards and backwards.
- Python has some tricks, but how could we build this?

- palindrome = lambda w: w == w[::-1]

- [::-1] isaslicing shortcut [0:len(w) :-1] to reverse items.
- Let's write Reverse:

def reverse_while(s):

>>> reverse_while('hello')

'olleh'
def reverse(s): i
result = "'
result = ' while s:
first = s[0]
‘FOI" -l_etter 'in S s = s[1:] # remove the first letter

result = first + result
return result

result = letter + result

return result

Fun Palindromes

«C88C

‘racecar

LOL

-radar

-a man a plan a canal panama
.aibohphobia @

- The fear of palindromes.

‘https.//czechtheworld.com/best-
palindromes/#palindrome-words

https://czechtheworld.com/best-palindromes/
https://czechtheworld.com/best-palindromes/

Writing Reverse Recursively

def reverse(s):
if not s:

return "'
return 'TODO'

deft palindrome(word) :

return word == reverse(word)

How should reverse work?

-Our algorithm in words:
- Take the first letter, put it at the end
- The beginning of the string is the reverse of the rest.

reverse('ABC"'")

> reverse('BC') + 'A'

> reverse('C') + 'B' + 'A
> 'C' + 'B' + 'A

> 'CBA'

reverse recursive

def reverse(s):
if not s:
return '

return Recursive Case

def palindrome(word) :
return word == reverse(word)

10

Palindrome - Alternative Approaches

- Compare first / last letters, working our way towards the middle
- Base Case?
- What is the smallest word that is a palindrome?
A 1-letter word!
- A O letter word? Maybe?

- We can have a recursive case:
« |f the first and last letter are the same, check the "inner word"
- If they're not = return False

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Summing Numbers

Combining Return Values

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Iteration vs Recursion: Sum Numbers

While loop: For loop:
def sum(n): def sum(n):
total = 0 total = 0
i =0 for 1 1n range(0, n+1):
while 1 < n: total += 1
1 += 1 return total
total += 1

return total

Recursively Sum Number

- What is the base case?
- What is the smallest number that we can sum to?
. |[f so, what is the result?

def sum(n):
if n ==

return 0

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Recursively Sum Numbers

Recursion:

def sum(n):
1T n ==
return 0
return n + sum(n-1)

Iteration vs Recursion: Cheating!

Sometimes it's best to just use a formula! But that's not always the point. ©

def sum(n):
return (n x (n + 1)) / 2

16

Review: Functions

def <function name> (<argument list>) :

b

return expression

def concat(strl, str2):
return strl+str2;

concat(“Hello”,”World”)

- Generalizes an expression or set of statements to
apply to lots of instances of the problem

- A function should do one thing well

How does it work?

- Each recursive call gets its own local variables
- Just like any other function call
- Computes its result (possibly using additional calls)
- Just like any other function call
- Returns its result and returns control to its caller
- Just like any other function call
- The function that is called happens to be itself
- Called on a simpler problem
- Eventually stops on the simple base case

Computational Structures in Data Science

Recursion With Lists

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Another Example - Finding a Minimum

indexing an element of a sequence

def first(s):
""HMReturn irst element in a sequence."""
return s[0O]

def rest(s):
"""Return all elements in a sequence after the first"""
return s[1:]

Slicing a sequence of elements

def min_r(s):
"""Return minimum value in a sequence."""
if Base Case

else:

Recursive Case

- Recursion over sequence length

Computational Structures in Data Science

Understanding Order of Execution

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Recall: Iteration

1. Initialize the “base” case of no iterations

def sum_of_sq es(n) . 2. Starting value

accum = 0 23.Endingvalue
for 1 i1n range(1l,n+1):

accum =_accum + %17
return accum

4. New loop variable value

Recursion Key concepts - by example

<

1. Test for simple “base” case

2. Solution in simple “base” case

yd

def su
if n

else

2

bf_squares(n) :
< 1:
return 0

return sum_of_squares(n-1) + n*%2

AN

3. Assume recusive solution
to simpler problem

[N

4. "Combine” the simpler part
of the solution, with the
recursive case

- The sum of no numbers is zero
« The sum of 14 through n? is the
- sum of 12 through (n-1)
- plus n?

def sum_of_squares(n):
if n < 1:
return 0
else:
return sum_of_squares(n-1) + n*x*2

Why does it work

sum_of_squares(3)

sum_of_squares(3) => sum_of_squares(2) + 3%x*2
=> sum_of_squares(l) + 2%x%*2 + 3%%2
=> sum_of_squares(0) + 1%%2 + 2%%2 + 3%x%x2

#
#
#
=> 0 + 1x%x2 + 2%%2 + 3%%x2 = 14

Questions

- In what order do we sum the squares ?
- How does this compare to iterative approach ?

def sum_of_squares(n):
accum = 0
for i in range(1l,n+1):
accum = accum + ixi
return accum

def sum_of_squares(n): def sum_of_squares(n):
if n < 1: 1t n <1
return 0 return 0
else: else:
return sum_of_squares(n-1) + nx*x2 return nx*x2 + sum_of_squares(n-1)

- The recursive “leap of faith” works as long as we hit the base case eventually

- What happens if we don't?

Recursion (unwanted)

Why Recursion?

- "After Abstraction, Recursion is probably the 29 biggest
idea in this course”

-“It's tremendously useful when the problem is self-
similar”

-“It's no more powerful than iteration, but often leads to
more concise & better code”

1

“It's more ‘mathematical
-“It embodies the beauty and joy of computing”

Example I

List all items on your hard disk

=- L'; gravelleconsulting . Files
E] L_ scripts
- diiit - Folders contain
- (= dojo Eil
(= doijox * FIES

E] = widgets .
56 s Folders

------ %] StocklInfo.css /\

E] L images
- _‘r crude_oil_179x98.png Recursion!
444444 _‘r gasoline_179x95.png
------ -4 gold_179x98.png
B _T natural_gas_179x98.png
=] L templates
A 2] StockInfo.html
------ D stockWwidget. htm

Why Recursion? More Reasons

- Recursive structures exist (sometimes hidden) in nature and
therefore in datal

- |t's mentally and sometimes computationally more efficient
to process recursive structures using recursion.

