Computational Structures in Data Science

Object-Oriented Programming

Berkeley

©@O®SO©

Announcements

- Midterm Thurs 3/14
- We will be sending seating assignments out early next week

- If you have a conflict email us ASAP - should have already filled out the form

« cs88@berkeley.edu (Please don't email just me. | love to help, but can't get to 500
emails)

- Review sessions posted on Ed.
- Will be updating Lab/HW schedule to give you a chance to study.

mailto:cs88@berkeley.edu

Computational Structures in Data Science

Object-Oriented Programming

Berkeley

©@O®SO©

Learning Objectives

- Learn how to make a class in Python
- class keyword
__init__ method
- self

Object-Oriented Programming (OOP)

- Objects as data structures —

° 1 Attrlbutes
With methods you ask of them /' —

» These are the behaviors 2:;::::2 / \ / Attnbutes

. messages Behawors

« With local state, to remember

» These are the attributes _’ ’
. Classes & Instances ‘ o |

An object-oriented program consists of many well-encapsulated

d I nSta Nce an exam p I e Of Cla SS objects and interacting with each other by sending messages

- E.g. Fqufy is instance of Dog www3.ntu.edu.sg/home/ehchua/programming
’ /java/images/00P-Objects.gif

 Inheritance saves code

« Hierarchical classes

« e.g., a Tesla is a special case of an Electric Vehicle,
which is a special cade of a car

« Other Examples (though not pure)
- Java (CS61B), C++

Object-Oriented Programming is About Design

"In my version of computational thinking, |
imagine an abstract machine with just the
data types and operations that | want. If
this machine existed, then | could write the
program | want.

But it doesn't. Instead | have introduced a
bunch of subproblems — the data types
and operations — and | need to figure out
how to implement them. | do this over and
over until I'm working with a real machine
or a real programming language. That's the
art of design."

— Barbara Liskov,
Turing Award Winner, UC Berkeley '61.
Full interview

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://www.quantamagazine.org/barbara-liskov-is-the-architect-of-modern-algorithms-20191120/

- Consist of data and behavior, bundled together to create
abstractions

- Abstract Data Types use functions to create abstractions
- Classes define a new type in a programming language
- They make the "abstract" data type concrete.

class

A class has
-attributes (variables) ! car \\
-methods (functions) :_:%

setSpeed() getSpeed()
ne

that define its behavior, N

- An object is the instance of a class.

class objects

Pl

-ODbjects are concrete instances of classes in memory.
- They have state
- mutable vs immutable (lists vs tuples)

- Methods are functions that belong to an object
-Objects do a collection of related things

-In Python, everything is an object

- All objects have attributes

- Manipulation happens through methods

Python class statement

class ClassName:
def __1init__(self):
<initialization steps>

<statement—-N>

Coming Next Week:
class ClassName (inherits):
<statement-1>

<statement—-N>

From ADTs to Classes

- An ADT is an abstract representation of a type of Data.
def points(x, y) # our point ADT

return { 'x': x, 'y': y}

class Point:
def __init__(self, x, y):
self.x = X
self.y = vy
def subtract(self, other):

return Point(self.x - other.x, self.y -
other.y)

From ADTs to Classes (Usage)

>>> origin = point(0, 0) # Using the ADT
>>> type(origin)

<class 'dict'>

>>> origin

{'x"'": 0, 'y': 0}

>>> my_house = Point(5, 5) # Using the class
>>> my_house.Xx

5

>>> type(my_house)

<class ' _ main__.Point'>

>>> my_house

<__main__.Point objegt.altiv@xdD4fdes .l @ crrncsa

Example: Account

class BaseAccount:

— def __init__(self, name, initial_deposit):
self.name_= name
self.balance~= initial_deposit

def account_name(self): attributes

return self . name

new namespace

def balance(self): The object
return self.balance dot

~——

def withdraw(self, amount):

self.balan -= amount
return self.b

methods

Creating an object, invoking a method

/The Class Constructor

my_acct = BaseAccount("John Doe", 93)
my_acct.withdraw(42)

\dOt

Special Initialization Method

class BaseAccount:

def __1init__(self, name, initial_deposit):
self.name = name
self.balance = initial_deposit

def account_name(self):

return self . name return None

def balance(self):
return self.balance

def withdraw(self, amount):
self.balance -= amount
return self.balance

More on Attributes

- Attributes of an object accessible with ‘dot’ notation
obj.attr

- You can distinguish between “public” and “private” data.

- Used to clarify to programmers how you class should be
used.

- In Python an _ prefix means “this thing is private”
- _foo and __foo do different things inside a class.
- More for the curious.

 Class variables vs Instance variables:
- Class variable set for all instances at once
- Instance variables per instance value

https://dbader.org/blog/meaning-of-underscores-in-python

Example

class BaseAccount:

def __init__(self, name, initial_deposit):
self.name = name
self.balance = initial_deposit

def name(self):
return self.name

def balance(self):
return self.balance

def withdraw(self, amount):
self.balance -= amount
return self.balance

Example: Suggested “private” attributes

class BaseAccount:

def __init__(self, name, initial_deposit):
self. _name = name
self._balance = initial_deposit

def name(self):
return self._ name

def balance(self):
return self._balance

def withdraw(self, amount):
self. _balance -= amount
return self._balance

Example: class attribute

class BaseAccount:
account_number_seed = 1000

def __init__(self, name, initial_deposit):
self. _name = name
self._balance = initial_deposit
self. _acct_no = BaseAccount.account_number_seed
BaseAccount.account_number_seed += 1

def name(self):
return self._ name

def balance(self):
return self._balance

def withdraw(self, amount):
self. _balance -= amount
return self._balance

More class attributes

class BaseAccount:
account_number_seed = 1000
accounts = []

def __init__(self, name, initial_deposit):
self. _name = name
self._balance = initial_deposit
self. _acct_no = BaseAccount.account_number_seed
BaseAccount.account_number_seed += 1
BaseAccount.accounts.append(self)

def name(self):

def show_accounts():
for account in BaseAccount.accounts:
print(account.name(),
account.account_no(),account.balance())

