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Announcements

• Reminder to practice using pen & paper, notebooks, etc.
• Use the extensions form, please don't email for extensions
• https://go.c88c.org/extensions
• Post on ed first, please!
• Way more staff on ed than on email.

• Review and Exam Prep sections starting this week (tomorrow!)
• Check the CS88 Calendar
• Reminder:
• MT Survey
• Regrade requests close tomorrow. 

https://go.c88c.org/extensions


Computational Structures in Data Science

Efficiency
& Run Time Analysis



Learning Objectives

•Runtime Analysis:
•How long will my program take to run? 
•Why can’t we just use a clock?
• How can we simplify understanding computation in an algorithm
•Enjoy this stuff? Take 61B!
• Find it challenging? Don’t worry! It’s a different way of thinking.



Efficiency is all about trade-offs

•Running Code: Takes Time, Requires Memory
• More efficient code takes less time or uses less memory
•Any computation we do, requires both time and "space" on our computer.
•Writing efficient code is not obvious
• Sometimes it is even convoluted!
•But!
•We need a framework before we can optimize code
• Today, we're going to focus on the time component.



Is this code fast?

•Most code doesn’t really need to be fast! Computers, even 
your phones are already amazingly fast!
•Sometimes…it does matter!
• Lots of data
• Small hardware
• Complex processes

• Slow code takes up battery power



Beware!

"Premature Optimization is the root of all evil"
- Donald Knuth, Stanford CS Professor

There is no use in fast code if it is wrong! 



Runtime analysis problem & solution

• Time w/stopwatch, but…
•Different computers may have different runtimes.  L
•Same computer may have different runtime on the same
input.  L
•Need to implement the algorithm first to run it.  L

• Solution: Count the number of “steps” involved, not time!
•Each operation = 1 step
• 1 + 2 is one step
• lst[5] is one step

• When we say “runtime”, we’ll mean # of steps, not time!



Runtime: input size & efficiency

•Definition:
• Input size: the # of things in the 
input. 
• e.g. length of a list, the number of 
iterations in a loop.
•Running time as a function of input 
size
•Measures efficiency
• Important!
• In CS88 we won’t care about the 
efficiency of your solutions!
•…in CS61B we will
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Runtime analysis : worst or average case?

•Could use avg case: 
• Average running time over a vast # of inputs
• Instead: use worst case
• Consider running time as input grows
• Why?
• Nice to know most time we’d ever spend
• Worst case happens often
• The "average" can be similar to the worst
•Often called “Big O” for "order"
• O(1), O(n) …



Runtime analysis: Final abstraction

• Instead of an exact number of 
operations we’ll use abstraction
• Want order of growth, or dominant term

• In CS88 we’ll consider
• Constant O(1)
• Logarithmic O(log n)
• Linear O(n)
• Quadratic O(n2)
• Exponential O(2n)

•E.g. 10n2 + 4log(n) + n
• …is quadratic

Graph of order of growth curves 
on log-log plot
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Example: Finding a student (by ID)

• Input
•Unsorted list of students L
• Find student S
•Output
• True if S is in L, else False
•Pseudocode Algorithm
•Go through one by one, 
checking for match.
• If match, true
• If exhausted L and didn’t 
find S, false

•Worst-case running time 
as function of the size of L?

1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential



Computational Patterns

• If the number of steps to solve a problem is always the same → Constant time: 
O(1)
• If the number of steps increases similarly for each larger input → Linear Time: 
O(n)
•  Most commonly: for each item 
• If the number of steps increases by some a factor of the input → Quadradic 
Time: O(n2)
•Most commonly: Nested for Loops
• Two harder cases:
• Logarithmic Time: O(log n)
•We can double our input with only one more level of work
•Dividing data in “half” (or thirds, etc)

•Exponential Time: O(2n)
For each bigger input we have 2x the amount of work!



Example: Finding a student (by ID)

• Input
•Sorted list of students L
• Find student S
•Output : same
•Pseudocode Algorithm
•Start in middle
• If match, report true
• If exhausted, throw away 
half of L and check again in 
the middle of remaining part 
of L
• If nobody left, report false

•Worst-case running time 
as function of the size of L?

1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential



Comparing Fibonacci

def iter_fib(n):
    x, y = 0, 1
    for _ in range(n):
       x, y = y, x+y
    return x

def fib(n): # Recursive
    if n < 2:
       return n
    return fib(n - 1) + fib(n - 2)



Tree Recursion

• Fib(4) → 9 Calls
• Fib(5) → 16 Calls
• Fib(6) → 26 Calls
• Fib(7) → 43 Calls
• Fib(20) → 

16



Why?

•  Notice there was all this duplication in the tree? 
•What is the exact order of growth?
•  It's exponential.
•  phi to the N (φ n ), where phi is the golden ratio.
N Operations

1 1
2 3
3 5
4 9
7 41
8 67
20 21891



Efficiency of Linked Lists vs Lists

•  Linked Lists generally use less memory.
•  But this can make it slower to compute data.
•  Linked Lists:
•  Once you've found an item, inserting / removing is easy, O(1)
•  Finding anything other than the first/last item is O(n)
•  "Regular" Lists:
•  Inserting / Removing items, other than the last is O(n) – due to internal 
copying
•  Finding any random item is O(1).

•  What if you need to iterate over all items in order?
•  O(n) in both cases



Computational Structures in Data Science

Improving Efficiency



Learning Objectives

•  Learn how to cache the results to save time.
•  "memoization" is a specific version to avoid repeated calculations



Example

•  Use a dictionary to cache results.
•  This is called memoization

fib_results = {}
def memo_fib(n): # Look up values in our dictionary.
    global fib_results
    if n in fib_results:
        print(f'found {n} -> {fib_results[n]}')
        return fib_results[n]
    if n < 2:
        fib_results[n] = n
        return n
    result = memo_fib(n - 1) + memo_fib(n - 2)
    fib_results[n] = result
    return result



A Better Approach

•Python's functools module has a `cache` function
•  Uses a technique called decorators that we don't cover.
•  Decorators are really just a "shortcut" for higher order functions.
•  e.g. cache_fib = cache(fib) is a similar approach to the function below, 
but less commonly used. 

from functools import cache

@cache
def cache_fib(n): # Recursive
    if n < 2:
        return n
    return cache_fib(n - 1) + cache_fib(n - 2)

https://docs.python.org/3/library/functools.html


What next?

•Understanding algorithmic complexity helps us know whether something is 
possible to solve.
•Gives us a formal reason for understanding why a program might be slow
• This is only the beginning:
•We’ve only talked about time complexity, but there is space complexity. 
• In other words: How much memory does my program require?
•Often you can trade time for space and vice-versa
• Tools like “caching” and “memorization” do this. 

• If you think this is cool take CS61B!


