
Computational Structures in Data Science

Efficiency
& Run Time Analysis

Announcements

• Reminder to practice using pen & paper, notebooks, etc.
• Use the extensions form, please don't email for extensions
• https://go.c88c.org/extensions
• Post on ed first, please!
• Way more staff on ed than on email.

• Review and Exam Prep sections starting this week (tomorrow!)
• Check the CS88 Calendar
• Reminder:
• MT Survey
• Regrade requests close tomorrow.

https://go.c88c.org/extensions

Computational Structures in Data Science

Efficiency
& Run Time Analysis

Learning Objectives

•Runtime Analysis:
•How long will my program take to run?
•Why can’t we just use a clock?
• How can we simplify understanding computation in an algorithm
•Enjoy this stuff? Take 61B!
• Find it challenging? Don’t worry! It’s a different way of thinking.

Efficiency is all about trade-offs

•Running Code: Takes Time, Requires Memory
• More efficient code takes less time or uses less memory
•Any computation we do, requires both time and "space" on our computer.
•Writing efficient code is not obvious
• Sometimes it is even convoluted!
•But!
•We need a framework before we can optimize code
• Today, we're going to focus on the time component.

Is this code fast?

•Most code doesn’t really need to be fast! Computers, even
your phones are already amazingly fast!
•Sometimes…it does matter!
• Lots of data
• Small hardware
• Complex processes

• Slow code takes up battery power

Beware!

"Premature Optimization is the root of all evil"
- Donald Knuth, Stanford CS Professor

There is no use in fast code if it is wrong!

Runtime analysis problem & solution

• Time w/stopwatch, but…
•Different computers may have different runtimes. L
•Same computer may have different runtime on the same
input. L
•Need to implement the algorithm first to run it. L

• Solution: Count the number of “steps” involved, not time!
•Each operation = 1 step
• 1 + 2 is one step
• lst[5] is one step

• When we say “runtime”, we’ll mean # of steps, not time!

Runtime: input size & efficiency

•Definition:
• Input size: the # of things in the
input.
• e.g. length of a list, the number of
iterations in a loop.
•Running time as a function of input
size
•Measures efficiency
• Important!
• In CS88 we won’t care about the
efficiency of your solutions!
•…in CS61B we will

C88C

CS61B

CS61C

Runtime analysis : worst or average case?

•Could use avg case:
• Average running time over a vast # of inputs
• Instead: use worst case
• Consider running time as input grows
• Why?
• Nice to know most time we’d ever spend
• Worst case happens often
• The "average" can be similar to the worst
•Often called “Big O” for "order"
• O(1), O(n) …

Runtime analysis: Final abstraction

• Instead of an exact number of
operations we’ll use abstraction
• Want order of growth, or dominant term

• In CS88 we’ll consider
• Constant O(1)
• Logarithmic O(log n)
• Linear O(n)
• Quadratic O(n2)
• Exponential O(2n)

•E.g. 10n2 + 4log(n) + n
• …is quadratic

Graph of order of growth curves
on log-log plot

Constant

Logarithmic

Linear

QuadraticCubicExponential

Example: Finding a student (by ID)

• Input
•Unsorted list of students L
• Find student S
•Output
• True if S is in L, else False
•Pseudocode Algorithm
•Go through one by one,
checking for match.
• If match, true
• If exhausted L and didn’t
find S, false

•Worst-case running time
as function of the size of L?

1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential

Computational Patterns

• If the number of steps to solve a problem is always the same → Constant time:
O(1)
• If the number of steps increases similarly for each larger input → Linear Time:
O(n)
• Most commonly: for each item
• If the number of steps increases by some a factor of the input → Quadradic
Time: O(n2)
•Most commonly: Nested for Loops
• Two harder cases:
• Logarithmic Time: O(log n)
•We can double our input with only one more level of work
•Dividing data in “half” (or thirds, etc)

•Exponential Time: O(2n)
For each bigger input we have 2x the amount of work!

Example: Finding a student (by ID)

• Input
•Sorted list of students L
• Find student S
•Output : same
•Pseudocode Algorithm
•Start in middle
• If match, report true
• If exhausted, throw away
half of L and check again in
the middle of remaining part
of L
• If nobody left, report false

•Worst-case running time
as function of the size of L?

1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential

Comparing Fibonacci

def iter_fib(n):
 x, y = 0, 1
 for _ in range(n):
 x, y = y, x+y
 return x

def fib(n): # Recursive
 if n < 2:
 return n
 return fib(n - 1) + fib(n - 2)

Tree Recursion

• Fib(4) → 9 Calls
• Fib(5) → 16 Calls
• Fib(6) → 26 Calls
• Fib(7) → 43 Calls
• Fib(20) →

16

Why?

• Notice there was all this duplication in the tree?
•What is the exact order of growth?
• It's exponential.
• phi to the N (φ n), where phi is the golden ratio.
N Operations

1 1
2 3
3 5
4 9
7 41
8 67
20 21891

Efficiency of Linked Lists vs Lists

• Linked Lists generally use less memory.
• But this can make it slower to compute data.
• Linked Lists:
• Once you've found an item, inserting / removing is easy, O(1)
• Finding anything other than the first/last item is O(n)
• "Regular" Lists:
• Inserting / Removing items, other than the last is O(n) – due to internal
copying
• Finding any random item is O(1).

• What if you need to iterate over all items in order?
• O(n) in both cases

Computational Structures in Data Science

Improving Efficiency

Learning Objectives

• Learn how to cache the results to save time.
• "memoization" is a specific version to avoid repeated calculations

Example

• Use a dictionary to cache results.
• This is called memoization

fib_results = {}
def memo_fib(n): # Look up values in our dictionary.
 global fib_results
 if n in fib_results:
 print(f'found {n} -> {fib_results[n]}')
 return fib_results[n]
 if n < 2:
 fib_results[n] = n
 return n
 result = memo_fib(n - 1) + memo_fib(n - 2)
 fib_results[n] = result
 return result

A Better Approach

•Python's functools module has a `cache` function
• Uses a technique called decorators that we don't cover.
• Decorators are really just a "shortcut" for higher order functions.
• e.g. cache_fib = cache(fib) is a similar approach to the function below,
but less commonly used.

from functools import cache

@cache
def cache_fib(n): # Recursive
 if n < 2:
 return n
 return cache_fib(n - 1) + cache_fib(n - 2)

https://docs.python.org/3/library/functools.html

What next?

•Understanding algorithmic complexity helps us know whether something is
possible to solve.
•Gives us a formal reason for understanding why a program might be slow
• This is only the beginning:
•We’ve only talked about time complexity, but there is space complexity.
• In other words: How much memory does my program require?
•Often you can trade time for space and vice-versa
• Tools like “caching” and “memorization” do this.

• If you think this is cool take CS61B!

