Computational Structures in Data
R N Vo 7= a Vo = N —

Lecture:
Exceptions

Berkeley

@®SO

Survey Comments

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Learning Objectives

- Exceptions give us a formal way to address error conditions
- "Catch" exceptions in a Python Program
* Define and Raise our own exceptions

Errors Can Occur Just About Anywhere!

* Function receives arguments of improper type?
* Resources (e.g. files or some data) are not available
* Network connection is lost or times out?

1/9° :)J;&I'*C.J | C%(n‘e

TN L) i

rl-:o.ecj” (S l'v\c. c-f‘\c\k)
3 f'.’.’" & £ 4, Te

{€ST,

1S4y

@z\%*‘)o ?qn e | e
\Moﬁ) LN rdw\ .

Fiest "A~ P : b cin oA
o a1l T iy e
Jye C/ﬂ,l W :

Grace Hopper's Notebook, 1947, Moth found in a Mark II Computer

Example exceptions (

- Unhandled, "thrown" back to the top level interpreter
- Or halt the program

>>> 3/0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> str.lower(1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor 'lower' requires a 'str' object but received a 'int’
>>> ""[2]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: string index out of range

>>>

https://docs.python.org/3/library/exceptions.html

Exceptions mean something bad has
happened!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functions

*Q: What is a function supposed to do?
* A: One thing well

- Q: What should it do when it is passed arguments that don’t make sense?

>>> def divides(x, y):
return y%x ==

>>> divides(0, 5)
7?7

>>> def get(data, selector):
return data[selector]

>>> get({'a": 34, 'cat"'9 lives'}, 'dog’)
72?77

Exceptional exit from functions

* Function doesn’t “return” but instead execution is thrown out of the function

>>> def divides(x, y):
returny % x ==

>>> divides(0, 5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in divides
ZeroDivisionError: integer division or modulo by zero
>>> def get(data, selector):
return data[selector]

>>> get({'a": 34, 'cat"'9 lives'}, 'dog’)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in get

KeyError: 'dog'

>>>

Reading A "Stack Trace" or "Traceback" (

- All errors in Python should return some structured feedback.

- Errors may be dense but contain some really helpful information!
<~ python3 -i 18-Exceptions.py

What is your age? 5

Catching CS88Error

Traceback (most recent call last):
File "...Exceptions.py’, line 24, in <module>

get_age_in_days()

File "...", line 20, in get_age_in_days
raise e
File "...", line 14, in get_age_in_days

raise CS88Error('You seem young!)
__main__.CS88Error: You seem young!

https://docs.python.org/3/library/traceback.html

Continue out of multiple calls deep

- Stack “unwinds” until exception is handled or we reach the start of the program

def divides(x, y):
return y%x ==
def divides24(x):
return divides(x,24)
divides24(0

Traceback (most recent call last)

ZeroDivisionError
<ipython-input-l4-ad26ceBae76a> in <module>()
3 def divides24(x):
4 return divides(x,24)
-——=> 5 divides24(0)

<ipython-input-14-ad26ceBae76a> in divides24(x)

2 return y$x ==
3 def divides24(x):
p—— | return divides(x,24)

5 divides24(0)

<ipython-input-l4-ad26ceBae76a> in divides(x, y)
1 def divides(x, y):

—— 2 return y$x ==
3 def divides24(x):
4 return divides(x,24)

5 divides24(0)

ZeroDivisionError: integer division or modulo by zero

Python 3.3

def divides(x, y):

= return y%x == 0

def divides24(x):
return divides(x,24)
divides24(0)

Edit code

<Back Step 8of 11 | Forward> Last=>

integer division or modulo by zero

cuted

Frames

Global frame
divides
divides24

divides24
x |0

divides
x 0
y 24

Objects

function
divides(x, y)

function
divides24(x)

Types of exceptions

- Exceptions are just classes in Python, with common types for ease of use /
clarity.

- All inherit from BaseException

- AssertionError — The of exception raised by a failing assert statement

* TypeError -- A function was passed the wrong number/type of argument
* NameError -- A name wasn't found

*KeyError -- A key wasn't found in a dictionary

* RuntimeError -- Catch-all for troubles during interpretation
* Your own exceptions!

Flow of control stops at the exception

- And is ‘thrown back’ to wherever it is caught, by default no where.

def divides24(x):
return noisy divides(x,24

divides24(0)

ZeroDivisionError Traceback (most recer
<ipython-input-24-ea9%94e8lbe222> in <module>()
-===> 1 divides24(0)

<ipython-input-23-c56bcllb3032> in divides24(x)
1l def divides24(x):
————> 2 return noisy divides(x,24)

<ipython-input-20-df96adb0cl8a> in noisy divides(x, Yy)
1 def noisy divides(x, y):

——— 2 result = (y % == ()
3 if result:
4 print("{0} divides {1}".format(x, vy))
5 else:

ZeroDivisionError: integer division or modulo by zero

Assert Statements

* Allow you to make assertions about assumptions that your code relies on
- Use them liberally!
* Incoming data is "dirty" and unsafe till you've "cleaned" it

assert <assertion expression>, <string for failed>
- They "do nothing" if the statement is true.

: : : def divides(x, y):
¢ Ralse an eXCepthn Of type AssertlonError assert x |1= O, "Denominator must be non-
zero”

*You can turn them off:
returny % x==0

- Ignored in optimize flag: python3 -0 ...
- Governed by bool __debug_

Demo

- See an exception get raised
- Use an assert statement to validate input
* Use try/catch to recover from an exception

Handling Errors — try / except

* Wrap your code in try — except statements

try:
<try suite>
except <exception class> as <name>:
<except suite>
... # continue here if <try suite> succeeds w/o exception

- Execution rule
- <try suite> is executed first
- If during this an exception is raised and not handled otherwise
* And if the exception inherits from <exception class>
* Then <except suite> is executed with <name> bound to the exception
- Control jumps to the except suite of the most recent try that handles the exception

def safe apply fun(f,x):

try:
return f(x) # normal execution, return the result
except Exception as e: # exceptions are objects of class deri
return e # value returned on exception

def divides(x, y):
assert x != 0, "Bad argument to divides - denominator should be non-zero"
if (type(x) != int or type(y) != int):
raise TypeError("divides only takes integers")
return y%x ==

Raise statement

* Exception are raised with a raise statement
. raise <exception>, e.qg.:
 raise NamekError(f"The property {name} does not exist")

- <expression> must evaluate to a subclass of BaseException or an instance of
one

- Exceptions are constructed like any other object
. TypeError(‘Bad argument’)
- Raise Exceptions for unrecoverable errors!
- Something bad has gone on and you cannot continue.

Exceptions are Classes

class NoiseyException(Exception):
def __init__(self, stuff):
print("Bad stuff happened", stuff)

class CS88Error(Exception):
pass # The one time you can skip init. ;)

try:
return fun(x)
except:
raise NoiseyException((fun, x))

Demo

* Approach use of exceptions as a design problem
- Meaningful behavior => methods [& attributes]
* ADT methodology: What should a function do?
*What'’s private and hidden? vs What'’s public?

- Use it to streamline development

* Anticipate exceptional cases and unforeseen problems
‘try ... except
*raise / assert

