Computational Structures in Data Science

Iterators and Generators
(Part 2)

Berkeley

©@O®SO©

-Pick up where we left off!
-lterators - the iter protocol
-(Getitem protocol

-IS an object iterable?

-Lazy evaluation with iterators

Computational Structures in Data Science

Generator Functions

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Terminology [Docs]

generator

A function which returns a generator iterator. It looks like a normal
function except that it contains yield expressions for producing a
series of values usable in a for-loop or that can be retrieved one at a
time with the next() function.

generator iterator
An object created by a generator function.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://docs.python.org/3/glossary.html

Generators: turning iteration into an iterable

-GGenerator functions use the yield keyword

-GGenerator functions have no return statement, but they don't return
None

-They implicitly return a generator object
-(Generator objects are just iterators

def squares(n):
for 1 i1n range(n):
yield (i*1)

Spongebob Case

def spongebob_case(text):
caps = True
for letter 1in text:
if caps:
yield letter.upper ()
else:
yield letter.lower ()
caps = not caps
- Generate one letter at a time.
- Explore how caps changes with each iteration.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Nest iteration

def all_pairs(x):
for iteml in x:
for item2 in x:
yield(iteml, item2)

Order of Execution

- Our generator function executes until we hit yield
- Once we hit yielld, execution is paused
- Explore this with print statements

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Iterators

IIIIIIIIIIIIIIIIIIIIII

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

What’s an Iterator? [Docs]

iterator

An object representing a stream of data. Repeated calls to the
iterator's __next__ () method (or passing it to the built-in function
next ()) return successive items in the stream. When no more data

are available a StopIteration exception is raised instead.

iterable

An object capable of returning its members one at a time. Examples
of include all sequence types and objects of any classes you define
with an __iter__() method orwitha __getitem__() method

that implements sequence semantics.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://docs.python.org/3/glossary.html

Next element in generator iterable

-lterables work because they implement some "magic methods" on
them. We saw magic methods when we learned about classes,

g, _init_,_repr__and_str__
‘The first one we see for iterablesis = _next

-iter () -transforms a sequence into an iterator
- Usually this is not necessary, but can be useful.

Iterators: The 1ter protocol [

-In order to be iterable, a class must implement the iter protocol

-The iterator objects themselves are required to support the
following two methods, which together form the iterator protocol:

-__iter__: Return the iterator object itself. This is required to allow
both containers and iterators to be used with the for and in
statements.

-This method returns an iterator object (which can be self)

« next :Return the nextitem from the container. If there are no
further items, raise the Stoplteration exception.

https://docs.python.org/3/c-api/iter.html

The Iter Protocol In Practice

-Classes get to define how they are iterated over by defining these
methods

- containers (objects like lists, tuples, etc) typically define a Container
class and a separate Containterlterator class.

- Lists, Ranges, etc are not directly iterators
- We cannot call next() on them.
- We can all iter(list), iter(range), etc if needed.

- However, they implement an __iter__ method, and
list_iterator, range_iterator class, etc.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo

Computational Structures in Data Science

Building a Range Iterator

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Making a Range Iterator

- What does a range need?
- Start value
- Stop
- (We'll ignore step sizes)
- keep track of the current value
- An __iter__method
- A __next_ method

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Example

class myrange:
def __init__(self, n):
self.i = 0
self.n = n
def __diter__(self):
return self
def __next__(self):
if self.i < self.n:
current = self.1
self.i += 1
return current
else:
raise StopIteration()

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

The Getltem Protocol

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Get Item protocol - Build a Sequene

-Another way an object can behave like a sequence is indexing:
Using square brackets “[]" to access specific items in an object.

-Defined by special method: __getitem__(self, 1)
-Method returns the item at a given index

class myrange2:
def init (self, n):
self.n = n

def getitem (self, i):
if i >= 0 and 1 < self.n:
return i
else:
raise IndexError

def len (self):
return self.n

Get Item Protocol

- When __iter__isn't defined, checkif __getitem__ exists
- __getitem__ must accept integers as indices

- Start at O

- Continue iterating until IndexError is raised

- This is an older way of making iterators.
- Why two ways?
- Languages evolve over time!
- There's often more than one valid design.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Get Item Protocol [Docs]

class myrange2:
def __1init__(self, n):
self.n = n
def __getitem__(self, 1):
if 1 >= 0 and 1 < self.n:
return 1
else:
raise IndexError
def __len__(self):

return self.n

https://peps.python.org/pep-0234/

Computational Structures in Data Science

Iterators and Generators Review

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Terms and Tools

- Iterators: Objects which we can use in a for loop

- Anything that can be looped over!

- Sometimes they're lazy, sometimes not!
- Generators: A shorthand way to make an iterator that uses yield

- a function that uses yield is a generator function
- a generator function returns a generator object
- Generators do not use return
- Sequences: A particular type of iterable
- They know they're length, support slicing
- Are not lazy

What's the Big Picture?

- We have new tools for building data structures that behave
sequences

- We can handle "infinite" streams of data.
- We can build our own for loops, perhaps custom for loops.

What can we do now?

- Build our own for-loop like functions!
- Python doesn't let us extend built in keywords
- SO we can make a function like doFor (sequence, action)
- |s the sequence already an iterator? - Use next()
- Can we call iter (sequence)? 2 Use next()
- Can we call sequence[0]7 = Use Indexing
- Now we can get items

- We can call iTn(some_item) until:

- We catch StopIteration or IndexError
- Other Errors we should probably not address

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Type Checking

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Determining if an object is iterable

« from collections.abc import Iterable
- isinstance([1,2,3], Iterable)

-This is more general than checking for any list of particular type, e.g.,
list, tuple, string...

