
ITERATORS AND GENERATORS 11
DATA C88C

April 8, 2024

1 Iterators

1.1 Introduction

An iterable is a data type which contains a collection of values which can be processed
one by one sequentially. Some examples of iterables we’ve seen include lists, tuples,
strings, and dictionaries. In general, any object that can be iterated over in a for loop
can be considered an iterable.

Often we want to access the elements of an iterable, one at a time. We find ourselves
writing lst[0], lst[1], lst[2], and so on. It would be more convenient if there was
an object that could do this for us, so that we don’t have to keep track of the indices.

This is where iterators come in. Given an iterable, we can call the iter function on that
iterable to return a new iterator object. Each time we call next on the iterator object,
it gives us one element at a time, just like we wanted. Each iterator keeps track of its
position within the iterable. Calling the next function on an iterator will give the current
value in the iterable and move the iterator’s position to the next value.

In this way, the relationship between an iterable and an iterator is analogous to the re-
lationship between a book and a bookmark - an iterable contains the data that is being
iterated over, and an iterator keeps track of your position within that data.

Once an iterator has returned all the values in an iterable, subsequent calls to next on
that iterable will result in a StopIteration exception. In order to be able to access the
values in the iterable a second time, you would have to create a second iterator.



DISCUSSION 11: ITERATORS AND GENERATORS Page 2
1.2 Writing an Iterator Class

As a reminder, an iterator is an object that tracks the position in a sequence of values in
order to provide sequential access. It returns elements one at a time and is only good for
one pass through the sequence. The following is an example of a class that implements
Python’s iterator interface using two special methods __next__ and __iter__. This
iterator calculates all of the natural numbers one-by-one, starting from zero:

class Naturals:
def __init__(self):

self.current = 0

def __next__(self):
result = self.current
self.current += 1
return result

def __iter__(self):
return self

The __iter__ method returns an iterator object. If a class implements both a __next__
method and an __iter__ method, its __iter__ method can simply return self as the
class itself is an iterator.

The __next__ method checks if it has any values left in the sequence; if it does, it com-
putes the next element. To return the next value in the sequence, the __next__ method
keeps track of its current position in the sequence. In the Naturals class, we use self.
current to save the position.

If there are no more values left to compute, the __next__method must raise an exception
called StopIteration. This signals the end of the sequence. The __next__ method
defined in the Naturals class above does not raise StopIteration because there is no
“last natural number”.

Data C88C Spring 2024



DISCUSSION 11: ITERATORS AND GENERATORS Page 3
1.3 Questions

1. What would Python display? If a StopIteration Exception occurs, write StopIteration,
and if another error occurs, write Error.

Solution: It can be helpful to refer back to the iter example on the page 2. Re-
member that calling iter returns something that you can call next on. The rest
of the challenge in this problem is just keeping track of where you currently are in
the sequence.

>>> lst = [[1, 2]]
>>> i = iter(lst)
>>> j = iter(next(i))
>>> next(j)

Solution:
1

>>> lst.append(3)
>>> next(i)

Solution:
3

>>> next(j)

Solution:
2

>>> next(i)

Solution:
StopIteration

Data C88C Spring 2024



DISCUSSION 11: ITERATORS AND GENERATORS Page 4
2. Create an iterator that generates the sequence of Fibonacci numbers. The Fibonacci

sequence starts with 0 and 1, and then all subsequent numbers are formed by adding
the two previous numbers together. The first ten numbers of the Fibonacci sequence
are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34.
class FibIterator:

def __init__(self):

Solution:
self.current = 0
self.next = 1

def __next__(self):

Solution:
old_current = self.current
self.current = self.next
self.next = old_current + self.current
return old_current

def __iter__(self):
return self

Data C88C Spring 2024



DISCUSSION 11: ITERATORS AND GENERATORS Page 5

2 Generators

2.1 Introduction

Generators can be used to create iterators as well. Generators are functions that use a
yield statement instead of return. When a generator function is called, the body of
the function is not evaluated yet. Instead, a generator object, which is a type of iterator,is
created and is the return value of the function call. The elements of this iterator are the
yielded values of the function.

>>> square = lambda x: x*x
>>> def get_squares(s):
... for x in s:
... yield square(x)
>>> square_iter = get_squares([1, 2, 3])
>>> next(square_iter)
1
>>> next(square_iter)
4
>>> next(square_iter)
9
>>> next(square_iter)
StopIteration

2.2 Yielding From an Iterable

When yield from is called on an iterator, it will yield every value from that iterator.
It’s similar to doing the following:

for x in an_iterator:
yield x

Data C88C Spring 2024



DISCUSSION 11: ITERATORS AND GENERATORS Page 6
2.3 Questions

1. What would Python display? If a StopIteration Exception occurs, write StopIteration,
or if another error occurs, write Error.
>>> def weird_gen(x):
... if x % 2 == 0:
... yield x * 2
... else:
... yield x
... yield from weird_gen(x - 1)
>>> next(weird_gen(2))

Solution:
4

>>> list(weird_gen(3))

Solution:
[3, 4]

>>> def greeter(x):
... while x % 2 != 0:
... print('hello!')
... yield x
... print('goodbye!')
>>> greeter(5)

Solution:
<generator object greeter at ...>

>>> gen = greeter(5)
>>> next(gen)

Solution:
hello!
5

>>> next(gen)

Data C88C Spring 2024



DISCUSSION 11: ITERATORS AND GENERATORS Page 7

Solution:
goodbye!
hello!
5

Data C88C Spring 2024



DISCUSSION 11: ITERATORS AND GENERATORS Page 8
2. Implement a generator function called filter(iterable, fn) that only yields

elements of iterable for which fn returns True.
def filter(iterable, fn):

"""
>>> is_even = lambda x: x % 2 == 0
>>> list(filter(range(5), is_even))
[0 , 2 , 4]
>>> all_odd = [2*y-1 for y in range (5)]
>>> list(filter(all_odd, is_even))
[]
>>> s = filter(naturals(), is_even)
>>> next(s)
2
>>> next(s)
4
"""

Solution:
for elem in iterable:

if fn(elem):
yield elem

Data C88C Spring 2024


