
CS 88 Computational Structures in Data Science
Fall 2021 final

INSTRUCTIONS

• You have 180 minutes to complete the exam. Do NOT open the exam until you are instructed to do so!

• You must not collaborate with anyone inside or outside of CS88.

• You must not use any internet resources to answer the questions.

• If you are taking an online exam, at this point you should have started your Zoom / screen recording. If
something happens during the exam, focus on the exam! Do not spend more than a few minutes dealing with
proctoring.

• When a question specifies that you must rewrite the completed function, you should not recopy the doctests.

• The exam is closed book, closed computer, closed calculator, except your hand-written 8.5" x 11" cheat sheets
of your own creation and the official CS88 Reference Sheet

Full Name

Student ID Number

Official Berkeley Email (@berkeley.edu)

What room are you in?

Name of the person to your left

Name of the person to your right

By my signature, I certify that all the
work on this exam is my own, and I will
not discuss it with anyone until exam
session is over. (please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• For fill-in-the-blank coding problems, we will only grade work written in the provided blanks.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

• Online Exams: You may start you exam as soon as you are given the password.
• You may have a digitial version of the CS88 Reference Sheet, or the PDF, but no other files.
• Open Reference Sheet Part 1
• Open Reference Sheet Part 2
• Clarifications Doc

https://drive.google.com/file/d/1vGqbiXnxiUu19hjrB9MNizo5kd-al5iU/view?usp=sharing
https://drive.google.com/file/d/1vGqbiXnxiUu19hjrB9MNizo5kd-al5iU/view?usp=sharing
https://drive.google.com/file/d/1qWNuSjxLN3Le4LrAiKNxkq5H7KQrZgDX/view?usp=sharing
https://docs.google.com/document/d/1FHF8C18KWeM0vf1XqyomwOz0hmSbpYLFkiWl5ha8qPs/edit?usp=sharing

Exam generated for 2

1. (7.0 points) WWPD

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”. If a
function is outputted, write “Function”. Your answers must fit within the boxes provided. Work outside the
boxes will not be graded.

f = lambda y, z: 3 * (y - z)

def fun(f, n):
if n < 10:

n += 2
return lambda x: f(x, n)

class Holiday:
def __init__(self, name, date):

self.date = date
self.name = name

def find_date(self):
return self.name + " is on " + self.date

def celebrate(self):
print("It's time to celebrate " + self.name)

class Birthday(Holiday):
guest_list = []
def __init__(self, name, date):

Holiday.__init__(self, name, date)
self.guest_list = []

def add_guests(self, guests):
return self.guest_list.extend(guests)

def celebrate(self, attendance):
gifts = []
for name, gift in attendance.items():

if name not in self.guest_list:
print("surprise!")

gifts.append(gift)
return gifts

(a) (1.0 pt)

>>> fun(f, 4)(8)

Exam generated for 3

(b) (0.5 pt)

>>> christmas = Holiday("christmas", "12/25")
>>> christmas.celebrate()

(c) (0.5 pt)

>>> jenny_birthday = Birthday("Jenny's birthday", "8/15")

(d) (1.0 pt)

>>> jenny_birthday.find_date()

(e) (1.0 pt)

>>> print(jenny_birthday.add_guests(["lukas", "chi", "matt"]))

(f) (1.0 pt)

>>> Birthday.guest_list

(g) (2.0 pt)

>>> Birthday.guest_list = ["shreya", "lukas", "tommy"]
>>> gifts = {"shreya": "candles", "lukas": "headphones", "nick": "cake"}
>>> jenny_birthday.celebrate(gifts)

Exam generated for 4

2. (8.0 points) The Sun And All Its Planets

Uss the environment diagram below to answer the following questions.

Envronment Diagram

(a) (2.0 pt) (a) What is the value of t in the f1 frame when the environment diagram is complete?

(b) (2.0 pt) (b) What is the value of sun in the f1 frame when the environment diagram is complete?

(c) (1.0 pt) (c) What frame is the parent of the f2 frame?

(d) (1.0 pt) (d) What is the value of y in the global frame when the environment diagram is complete?

(e) (2.0 pt) (e) What is the value of z in the global frame when the environment diagram is complete?

Exam generated for 5

3. (5.0 points) Equation Solver

Complete the solve_eqn function that, given an equation eqn represented as a list, will compute the final value
of evaluating the equation from left to right.

Think of an equation as an arithmetic expression with each integer or function in the equation stored at a
separate index in the list (see the doctests for an example). Assume that eqn is a non-empty list that will be in
a valid, processable format. For example, [1, add, 1, 100] would not be a valid input as it would translate
to the equation 1 + 1 100, but there should be an operation (like add) applied between 1 and 100 for it to be
a valid equation.

def solve_eqn(eqn):
"""
>>> from operator import add, sub
>>> eqn = [1, add, 1] # 1 + 1
>>> solve_eqn(eqn)
2
>>> eqn = [1, add, 2, sub, 3] # 1 + 2 - 3
>>> solve_eqn(eqn)
0
"""
if __________________:

return eqn[0]
else:

ans = ___________________
return __________________

(a) (5.0 pt) Complete the skeleton code. You may not add, change, or delete lines from the skeleton code.

def solve_eqn(eqn):

if __:
return eqn[0]

else:

ans = ___

return __

Exam generated for 6

4. (6.0 points) Remove-Multiple

We have created functions in the past that can remove every other node in a linked list, but Lukas wants a
custom linked list mutated according some new specifications. He gives you a list of numbers, and tasks you
with removing nodes using that list as a reference. For example, if he gives you a list containing [2, 7], you
would keep the first node, remove the next two, keep the node after that, and then remove the next seven nodes,
keeping any nodes afterwards.

Complete the remove_multiple function that takes in a linked list lnk and list number_to_remove and mutates
the link that is passed in by following the above process. If the sum of the numbers in number_to_remove is
more than the number of nodes in lnk, remove as many nodes as you can as dictated by the number_to_remove
(see doctests).

def remove_multiple(lnk, number_to_remove):
"""
>>> lnk = Link('a', Link('b', Link('c', Link('d', Link('e', Link('f')))))
>>> remove_multiple(lnk, [1, 2])
>>> lnk
Link('a', Link('c', Link('f')))
>>> lnk = Link('a', Link('b', Link('c', Link('d', Link('e', Link('f')))))
>>> remove_multiple(lnk, [1, 2, 3, 4])
>>> lnk
Link('a', Link('c', Link('f')))
"""
if __:

return
else:

for i in range(_______________):
if ______________________:

else:

return
remove_multiple(______________________________)

(a) (5.0 pt) Complete the skeleton code. You may not add, change, or delete lines from the skeleton code.

def remove_multiple(lnk, number_to_remove):

if __:
return

else:

for i in range(___):

if __:

__
else:

return

remove_multiple(__)

Exam generated for 7

(b) (1.0 pt) As the length of lnk grows, what is the time complexity of the remove_multiple function?

Constant

Logarithmic

Linear

Quadratic

Exponential

Exam generated for 8

5. (6.0 points) Divides Debugging

You’ve decided to write a function that returns True if x divides y and False otherwise. x divides y if there is
an integer c such that x*c = y. The divides function should only accept integer values for both x and y, and
your function should raise a TypeError if any other data type is passed.

Unfortunately, your code has some bugs in it: find at least 3 bugs and explain what they are! There can be
bugs in any of the given lines in the body of the divides function.

def divides(x, y):
"""
>>> divides(2, 4)
True
>>> divides(4, 2)
False
>>> 0 % 5
0
>>> divides(0, 5)
File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in divides
AssertionError: denominator should not be 0
>>> divides("two", "four")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: divides only takes integers
"""
assert y != 0, "denominator should not be 0"
if type(x) != int and type(y) != int:

raise TypeError("divides only takes integers")
return y % x != 0

In each box: Identify one of the 3 unique bugs and explain how to fix each bug. You must specify the line
number you would change or delete, or between which lines you would add a new line of code. After all the
bugs are fixed, the function should work as intended.

(a) (2.0 pt)

(b) (2.0 pt)

(c) (2.0 pt)

Exam generated for 9

6. (7.0 points) Objective Judge

A debate judge is in charge of declaring the winner of a two-sided debate. In order to be more objective, the
judge starts by drawing out all the points (nodes) in the debate as a “concept tree.” A point’s children are
sub-points that are related to that point.

Then the judge creates another tree of identical structure called the “winner’s tree” where non-leaf nodes are
marked as None and leaf nodes are marked as True if the “for” side has won that point or False if the “against”
side has won that point.

Complete the function judge which takes in a winner’s tree t corresponding to a debate and returns True if the
“for” side is the winner and False if the “against” side is the winner. The judge decides the “for” side has won a
given point if they have won the majority of points directly below that point. If there is a tie, the “against” side
wins that point. Using these rules, the judge can start at the leaves and move up to determine who won the
point that is the root node and therefore the debate.

Concept Tree (NOT used in function) | Winner’s Tree (used in function)

def judge(t):
"""
>>> point1 = Tree(True)
>>> point2 = Tree(None, [Tree(True), Tree(True)])
>>> point3 = Tree(False)
>>> point4 = Tree(None, [Tree(False), Tree(True), Tree(False)])
>>> judge(Tree(None, [point1, point2, point3]))#debate1
True
>>> judge(Tree(None, [point1, point4, point3]))#debate2
False
"""
if ___:

return t.value
else:

points_won = 0
for b in t.branches:

if __:
__

if ___:
return True

else:

Exam generated for 10

(a) (7.0 pt) Write the fully completed judge function below using the skeleton code provided. You may not
add, change, or delete lines from the skeleton code.

def judge(t):

if ___:
return t.value

else:
points_won = 0
for b in t.branches:

if ___:

__

if __:
return True

else:

Exam generated for 11

7. (7.0 points) MultiMerger

Write a generator merge which takes in a list of sorted lists that each contain integers. It yields the integers in
each of the lists in sorted order.

def merge(lst):
"""
>>> list(merge([[1,3,5],[2,4,6]]))
[1, 2, 3, 4, 5, 6]
>>> list(merge([[1,2,3,4,5,6,7]]))
[1, 2, 3, 4, 5, 6, 7]
>>> list(merge([[1,2,5],[4],[6]]))
[1, 2, 4, 5, 6]
"""
indices = [0] * len(lst) # [0, 0, 0 ...]
while True:

smallest = float('inf') # a number that is infinity
smallest_index = -1
for ____________:

index = ____________
if ____________:

smallest = ____________
smallest_index = ____________

if ____________:
return

indices[smallest_index] += 1
yield ____________

Exam generated for 12

(a) (7.0 pt) Complete the skeleton code. You may not add, change, or delete lines from the skeleton code.

def merge(lst):
indices = [0] * len(lst)
while True:

smallest = float(’inf’)
smallest_index = -1

for ___:

index = ___

if __:

smallest = ___

smallest_index = ___

if ___:
return

indices[smallest_index] += 1

yield __

Exam generated for 13

8. (8.0 points) Swaps

Complete the swap_pairs function that takes a linked list lnk and two argument function f as input. This
function creates a new linked list that is the same length as lnk by processing the given lnk in pairs of 2 Link
nodes (we’ll call the first node in the pair Node A and the second node in the pair Node B).

• If calling f on Node A and Node B returns True, add two Link nodes to the new linked list with the order
swapped, so the first Link node added will have the value of Node B and the second Link node will have
the value of Node A.

• Otherwise, add the two Link nodes to the new linked list in the same order as they were in the original
lnk, so the first Link node added will have the value of Node A and the second Link node will have the
value of Node B.

For every pair of 2 Link nodes, let the first Link node’s value be the first argument for f and the second Link
node’s value be the second argument.

def swap_pairs(lnk, f):
"""
>>> f = lambda x, y: x < y
>>> g = lambda x, y: x != y
>>> swap_pairs(Link(1), f)
Link(1)
>>> lnk = Link(1, Link(2))
>>> swap_pairs(lnk, f)
Link(2, Link(1))
>>> swap_pairs(Link(2, Link(1)), g)
Link(1, Link(2))
>>> swap_pairs(Link(1, Link(2, Link(4, Link(3)))), f)
Link(2, Link(1, Link(4, Link(3))))
"""
if ____________________________:

return ____________________
elif __________________________:

return _____________________
else:

rest = swap_pairs(_____________, _____________)
if _______________________:

return __
else:

return ___

Exam generated for 14

(a) (8.0 pt) Complete the skeleton code. You may not add, change, or delete lines from the skeleton code.

def swap_pairs(lnk, f):

if ___:

return ___

elif ___:

return __
else:

rest = swap_pairs(___________________________, ___________________________)

if ___:

return __
else:

return __

Exam generated for 15

9. (12.0 points) Tree Farm

You’ve decided to get into the tree growing business! All the trees you grow have the same structure as each
other but may have different values. You want to detect the nodes that are in the same position in two given
trees but have different values. Write a function that takes in two trees, t1 and t2, with the same structure and
yields the mismatching node values as a tuple.

def tree_mismatches(t1, t2):
"""
>>> t1 = Tree(1, [Tree(3, [Tree(5), Tree(7)]), Tree(9)])
>>> t2 = Tree(2, [Tree(4, [Tree(6), Tree(7)]), Tree(10)])
>>> a = tree_mismatches(t1, t2)
>>> next(a)
(1, 2)
>>> next(a)
(3, 4)
>>> next(a)
(5, 6)
>>> next(a)
(9, 10)
>>> next(a)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration
"""
if __________________:

n = __________________________
for i in range(n):

branch_mismatches = _______________________
for _________________________:

Exam generated for 16

(a) (6.0 pt) Complete the skeleton code. You may not add, change, or delete lines from the skeleton code.

def tree_mismatches(t1, t2):

if ___:

n = ___
for i in range(n):

branch_mismatches = __

for __:

__

Exam generated for 17

(b) (6.0 pt) What’s better than identical trees? Big trees! You want to create the tree_generator_2000
function that accepts an integer n and yields a new, larger tree whenever next is called. next can be called
infinitely many times.

You are provided a function tree_copy which accepts a tree t as an argument and returns a copy of t.

The trees generated by the tree_generator_2000 have a very specific structure:

• Every non-leaf node has n branches
• The value stored at each node is equal to the number of nodes beneath it
• The depth of the tree increases by one each time next is called

First, second, and third trees generated when n = 2:

def tree_copy(t):
"""Helper function that accepts a tree t as an argument and returns a copy of t."""
<implementation hidden>

def tree_generator_2000(n):
"""
>>> binary_tree = tree_generator_2000(2)
>>> next(binary_tree)
Tree(0)
>>> next(binary_tree)
Tree(2, [Tree(0), Tree(0)])
>>> next(binary_tree)
Tree(6, [Tree(2, [Tree(0), Tree(0)]), Tree(2, [Tree(0), Tree(0)])])
>>> next(binary_tree)
Tree(14, [Tree(6, [Tree(2, [Tree(0), Tree(0)]),Tree(2, [Tree(0), Tree(0)])]),

Tree(6, [Tree(2, [Tree(0), Tree(0)]), Tree(2, [Tree(0), Tree(0)])])
])
>>> ternary_tree = tree_generator_2000(3)
>>> next(ternary_tree)
Tree(0)
>>> next(ternary_tree)
Tree(3, [Tree(0), Tree(0), Tree(0)])
>>> next(ternary_tree)
Tree(12, [Tree(3, [Tree(0), Tree(0), Tree(0)]), Tree(3, [Tree(0), Tree(0), Tree(0)]),

Tree(3, [Tree(0), Tree(0), Tree(0)])])
"""
tree = _________________________________
while _________________________________:

new_branches = ___________________________
tree = _______________________________

Complete the skeleton code. You may not add, change, or delete lines from the skeleton code.

Exam generated for 18

def tree_generator_2000(n):

tree = ___

while ___:

__

new_branches = ___

tree = ___

Exam generated for 19

10. (11.0 points) Mario Kards

Friends from the world of Mario Kart have gathered to play some cards!

The players table contains information about the player id, player name, and the number of card games that
player has won in the past. The cards table contains information about each playing card including the suit of
the card (either “club”, “diamond”, “heart”, or “spade”"), the card value (a number from 1 - 13), and the player
id of the player that holds that card (or -1 if no player has that card in their hand right now).

players

id name games_won

1 “Peach” 4

2 “Mario” 3

3 “Bowser” 4

4 “Luigi” 4

5 “Toad” 3

cards

suit value dealt_to

“club” 5 4

“diamond” 8 3

“spade” 9 2

“heart” 13 -1

“heart” 11 1

“diamond” 9 2

“club” 12 2

“club” 4 -1

“club” 1 3

Use the SQL skeleton to complete each question.

(a) (2.0 pt) Find the card suit and card value for all cards that have not been dealt to any player.

suit value

“heart” “13”

“club” “4”

Exam generated for 20

SELECT ___

FROM ___

WHERE __

__;

(b) (3.0 pt) You’re trying to find players who have similar playing levels to other players. Find all unique
pairs of player names where both players in the pair have won the same number of games. The player
names within each pair can appear in any order in the resulting table.

Example Output:

name1 name2

“Bowser” “Peach”

“Bowser” “Luigi”

“Luigi” “Peach”

“Mario” “Toad”

SELECT ___

FROM ___

WHERE __

__;

(c) (3.0 pt) For each player that has at least one card, find the total card value for all cards that they currently
hold.

name total_value

“Peach” 11

“Mario” 30

“Bowser” 9

“Luigi” 5

Exam generated for 21

SELECT ___

FROM ___

WHERE __

__

GROUP BY ___;

(d) (3.0 pt) In this game, any player wins if they have at least one pair of cards that add up to exactly 21.
Find the name of all players who win according to this rule. Note: There may be a solution which
does not use all lines.

name

“Mario”

SELECT ___

FROM ___

WHERE __

__

GROUP BY ___;

Exam generated for 22

11. (15.0 points) Trusty Triangles

Fill in the Polygon and Triangle classes below according to the problem descriptions and the doctests. Polygons
are represented as a list of points, and triangles are polygons represented by a list of exactly 3 points.

class Polygon:
shape_counts = {}
def __init__(self, points):

part (a)

def count_by_sides(num_sides):
part (a)

def find_area(self):
part (c)

class Triangle(Polygon):
def num_tris_created():

part (b)

def find_area(self):
Assume this function is already correctly implemented!

Exam generated for 23

(a) (6.0 pt) First, complete the __init__ so that the class attribute shape_counts stores key-value pairs
where the key is the number of points and the value is the number of Polygons created with that number
of points. Also every polygon instance should have a single instance attribute points which is bound to
the list of points representing the polygon.

Second, complete the count_by_sides using the class attribute shape_counts to return the number of
polygons that have been created with num_sides sides.

>>> sq = Polygon([(0, 0), (4, 0), (4, 4), (0, 4)])
>>> sq2 = Polygon([(0, 0), (0, 2), (2, 2), (2, 0)])
>>> tr = Triangle([(0, 0), (4, 0), (0, 3)])
>>> Polygon.count_by_sides(4)
2
>>> Polygon.count_by_sides(10)
0

class Polygon:
def __init__(self, points):

__
if ___:

else:

__

def count_by_sides(num_sides):
if __:

return __
else:

return __

def __init__(self, points):

__

if __:

else:

def count_by_sides(num_sides):

if ___:

return __
else:

return __

Exam generated for 24

(b) (2.0 pt) Complete num_tris_created so that it returns the number of triangles that have ever been
created. Note that you may not need to use all the lines for a correct solution.

>>> Polygon.shape_counts = {}
>>> sq = Polygon([(0, 0), (4, 0), (4, 4), (0, 4)])
>>> tr = Triangle([(0, 0), (4, 0), (0, 3)])
>>> Triangle.num_tris_created()
1
>>> tr2 = Triangle([(0, 0), (4, 0), (0, 3)])
>>> Triangle.num_tris_created()
2

def num_tris_created():
__
__
__

def num_tris_created():

__

__

Exam generated for 25

(c) (7.0 pt) Complete the find_area function so that it returns the area of the polygon. Crucially you may
assume that the list of points in the polygon are ordered in the counterclockwise direction (the circled
integers in the drawing below indicate the index corresponding to the point in the points list). Also since
all polygons can be broken into triangles, you may find the already correctly implemented find_area
function in the Triangle class useful.

>>> sq = Polygon([(0, 0), (4, 0), (4, 4), (0, 4)])
>>> round(sq.find_area())
16
>>> pent = Polygon([(0, 2), (2, 0), (5, 0), (8, 2), (5, 6)]) # See visual below
>>> round(pent.find_area())
27
>>> line = Polygon([(0, 0), (4, 0)])
>>> round(line.find_area())
0

def find_area(self):
if len(self.points) <= __:

return ___
first_tri = __
points_copy = __
points_copy.pop(________)
return ____________________________ + ____________________________

Exam generated for 26

def find_area(self):

if len(self.points) <= ___:

return ___

first_tri = __

points_copy = ___

points_copy.pop(__________________)

return _______________________________ + _____________________________

Exam generated for 27

No more questions.

