
Data C88C
Fall 2024

Almeda, DeNero, Tsang
Midterm

Solutions last updated: Friday, November 1st, 2024
Print Your Name:

Print Your Student ID:

Print Your @berkeley.edu email address:

You have 110 minutes. There are 6 questions of varying credit (100 points total).

Question: 1 2 3 4 5 6 Total

Points: 15 32 15 23 15 0 100

For questions with circular bubbles,
you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

Don’t do this (it will be graded as incorrect)

– The exam is closed book, closed notes, closed computer, closed calculator, except two 8.5” x 11” pages
of your own creation and the provided midterm study guide.

– Anything you write outside the answer boxes or you cross out will not be graded.
– If you write multiple answers, your answer is ambiguous, or the bubble is not entirely filled in, we

will grade the worst interpretation.
– You may use built-in Python functions that do not require import, such as pow, len, abs, bool,
int, float, str, round, max, min, list, tuple, sum, all, any, map, filter, zip, sorted, and
reversed.

– You may not use example functions defined on your study guide unless a problem clearly states you
can.

– You may not use ; to place two statements on the same line.
– You may use the Link class defined on the midterm study guide.

Sign (or type) your name to confirm that all work on this exam will be your own. The penalty
for academic misconduct on an exam is an F in the course.

Sign (or print) your name:

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 21

Q1 Into the Haunted House! (15 points)
Dhruv and Andria stumble into a haunted house, and want to do some sleuthing to figure out the
mysteries inside!

1 flashlight = lambda item: print(item)
2 in_the_corner = "A patch of grass."
3
4 def haunted_house():
5 print("Spooky!" and "Scary!")
6 on_the_chandelier = lambda: "Look, it's Kenny!"
7 on_the_windowsill = print
8 flashlight(on_the_windowsill(on_the_chandelier()))
9
10
11 def peek(in_the_corner, where):
12 flashlight(where())
13
14 def attic():
15 in_the_corner = "A metal key."
16 def basement():
17 return in_the_corner
18 return basement

Into the unknown!

Midterm (Question 1 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 21 Data C88C – Fall 2024

(Question 1 continued…)

Q1.1 (5 points) Let’s figure out what secrets we’ve uncovered. Note what the following call expression
prints out.
If any of the lines errors, write “Error” and do not execute any further lines of code.
haunted_house()

Solution:
Scary!
Look, it’s Kenny!
None

Solution: On line 5, we evaluate the operand before printing. ”Spooky!” is a truthy value,
so we move onto ”Scary!”, which is also a truthy value. Therefore, the boolean expression
evaluates to ”Scary!”, which is printed out.
On line 8, we start by calling on_the_chandelier, which is a lambda function returning the
String ”Look, it’s Kenny!”. Since on_the_windowsill is bound to the print function, we print
out ”Look, it’s Kenny!”. Print always returns None, so we call flashlight on None. This prints
out None.

Assume we do not call haunted_house. Using the code from the previous page, answer the
following questions about the environment diagram that results from the following call expression:
peek("cobwebs.", attic())

Midterm (Question 1 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 21 Data C88C – Fall 2024

(Question 1 continued…)

Q1.2 (1.5 points) What should go in blank (a)?

Global

f1

attic

Solution: basement is defined within the call to attic, which is in frame 1. Therefore, the
parent is f1.

Midterm (Question 1 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 21 Data C88C – Fall 2024

(Question 1 continued…)

Q1.3 (1.5 points) What should go in blank (b)?

Global

f1

attic

Solution: peek is defined in the Global frame, so that is the parent.

Q1.4 (1.5 points) What should go in blank (c)?

attic

basement

flashlight

λ<line 1>

peek

where

Solution: We then evaluate the call expression flashlight(where()). Since we pass in
basement into the formal parameter where, we then call basement.

Q1.5 (2 points) What should go in blank (d)?

“A patch of grass.”

“A metal key.”

“cobwebs.”

None

Solution: in_the_corner is not found in the current frame f3. Therefore, we look to the
parent of basement, which is f1. We see that in_the_corner is found as ”A metal key.”, and
returned.

Q1.6 (1 point) What should go in blank (e)?

attic

basement

flashlight

λ<line 1>

peek

where

Solution: We then call flashlight, which is the lambda in line 1.

Midterm (Question 1 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 21 Data C88C – Fall 2024

(Question 1 continued…)

Q1.7 (1 point) What should go in blank (f)?

Global

f1

f2

f3

attic

peek

Solution: The parent of the lambda in line 1 is Global.

Q1.8 (1.5 points) What should go in blank (g)?

“A patch of grass.”

“A metal key.”

“cobwebs.”

None

Solution: Although we print out ”A metal key.”, print always returns None.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 21 Data C88C – Fall 2024

Q2 Ghostbusters! (32 points)
A ”spooky list” is one that has a ghost hidden somewhere in it. Ghosts are represented by some
spooky sequence. However, our ghosts have gotten crafty! As long as the spooky numbers appear in
consecutive order, even within a nested list, our list is considered spooky.

Oski decides to take a stab at implementing is_spooky, which detects whether our list is spooky or
not.

1 def is_spooky(s, sequence):
2 """Returns whether s is a spooky list given a non-empty sequence.
3 If the numbers in the sequence appear consecutively in s, return True.
4 Otherwise, return False.
5 >>> is_spooky([1, 2, 3], [1, 2, 3])
6 True
7 >>> is_spooky([[1], [2], [3]], [1, 2, 3])
8 True
9 >>> is_spooky([1, [2, [[[3]]]]], [1, 2, 3])
10 True
11 >>> is_spooky([1, [], 2, 3], [1, 2, 3])
12 True
13 >>> is_spooky([0, [1, 2], 3, 0], [1, 2, 3])
14 True
15 >>> is_spooky([], [1, 2, 3])
16 False
17 >>> is_spooky([1, 2, 4, 3], [1, 2, 3])
18 False
19 >>> is_spooky([123], [1, 2, 3]) #Spooky numbers should not be combined!
20 False
21 """
22 return sequence in s #OSKI'S BUGGY IMPLEMENTATION

Q2.1 (3 points) Give one example input s for a sequence [8, 0, 0] where Oski’s implementation would
successfully detect a spooky list.

Solution: Since sequence is [8, 0, 0] and Oski’s implementation is return sequence in s,
s should be any list where [8, 0, 0] is an element within the list. For example, [[8, 0, 0]].

Q2.2 (3 points) Give one example input s for a sequence [8, 0, 0] where Oski’s implementation would
fail to detect a spooky list. In other words, is_spooky would return True when the spooky list is
not spooky, or would return False when the spooky list is indeed spooky.

Solution: There will never be a case where Oski’s implementation returns True when
is_spooky is supposed to return False. Therefore, any spooky list where [8, 0, 0] is not
a singular element within the list, but still contains the numbers 8, 0, 0 consecutively will be a
valid input s.

Midterm (Question 2 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 21 Data C88C – Fall 2024

(Question 2 continued…)

(8 points) In order to help us detect these ghosts, fill in the following implementation of flatten,
which takes in a potentially nested list and returns a flattened list. A flattened list contains only integers
as elements within the list (i.e. there should not be lists within lists in the returned list).

1 def flatten(s):
2 """Returns a flattened version of s.
3 >>> flatten([])
4 []
5 >>> flatten([1, 2, 3])
6 [1, 2, 3]
7 >>> flatten([1, 2, [[[3]]]])
8 [1, 2, 3]
9 """
10 flat_list = []
11 for elem in s

Q2.3
:

12 if type(elem) == list:
13 flat_list.extend(flatten(elem))

Q2.4
14 else:
15 flat_list.append(elem)

Q2.5
16 return flat_list

Midterm (Question 2 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 21 Data C88C – Fall 2024

(Question 2 continued…)

Fill in the following implementation of how_spooky, which takes in a list s and a non-empty list
sequence. It returns the number of ghosts inside of s. Assume flatten is correctly implemented.

1 def how_spooky(s, sequence):
2 """Returns the number of ghosts inside of list s.
3 Ghosts take on the values in sequence.
4 >>> how_spooky([], [1])
5 0
6 >>> how_spooky([8, 1, 0, 0], [8, 0, 0])
7 0
8 >>> how_spooky([8, 0, 0], [8, 0, 0])
9 1
10 >>> how_spooky([1, [8], [], [0, [[0]]]], [8, 0, 0])
11 1
12 >>> how_spooky([0, 0, 0], [0, 0])
13 2
14 >>> how_spooky([1, 2, 3, 1, 2, 3, 1, 2, 3], [1, 2])
15 3
16 >>> how_spooky([1, [2], [[3, 1], 2, 3], 1, 2, 3], [1, 2])
17 3
18 """
19 flattened_list = BLANK ONE
20 def how_spooky_helper(lst):
21 if BLANK TWO:
22 return 0
23 elif BLANK THREE:
24 return BLANK FOUR
25 else:
26 return BLANK FIVE
27 return how_spooky_helper(flattened_list)

Q2.6 (1 point) What should go in BLANK ONE?

flatten(s)

s.flatten()

flatten()

Solution: flatten is not an attribute of lists, and needs to take in some argument.

Midterm (Question 2 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 21 Data C88C – Fall 2024

(Question 2 continued…)

Q2.7 (3 points) What should go in BLANK TWO?

len(lst) < len(sequence)

len(lst) != len(sequence)

len(lst) == len(sequence)

len(lst) > len(sequence)

lst[0] != sequence[0]

lst != sequence

lst[1:] != sequence[1:]

Solution: This checks that we have enough elements in the flattened list compared to the
sequence. If we have less elements compared to the sequence, there definitely won’t be a ghost
in here!

Q2.8 (3 points) What should go in BLANK THREE?

lst == sequence

lst[0] == sequence[0]

lst[1:] == sequence[1:]

lst[:len(sequence)] == sequence

any([lst[x] == sequence[x] for x in range(len(sequence))])

Solution: If the first len(sequence) of the list are equal to the sequence, then we should
add one to the ghost count!

Q2.9 (3 points) What should go in BLANK FOUR?

how_spooky_helper(lst)

how_spooky_helper(lst[1:])

how_spooky_helper(lst[:len(lst) - 1])

how_spooky_helper(lst[len(sequence):])

1 + how_spooky_helper(lst)

1 + how_spooky_helper(lst[1:])

1 + how_spooky_helper(lst[:len(lst) - 1])

1 + how_spooky_helper(lst[len(sequence):])

Solution: We should add 1 to our counter, then recursively call, removing the first element.
See the doctest on line 12 for why we only remove the first element instead of len(sequence)
elements.

Midterm (Question 2 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 21 Data C88C – Fall 2024

(Question 2 continued…)

Q2.10 (3 points) What should go in BLANK FIVE?

how_spooky_helper(lst)

how_spooky_helper(lst[1:])

how_spooky_helper(lst[:len(lst) - 1])

how_spooky_helper(lst[len(sequence):])

1 + how_spooky_helper(lst)

1 + how_spooky_helper(lst[1:])

1 + how_spooky_helper(lst[:len(lst) - 1])

1 + how_spooky_helper(lst[len(sequence):])

Solution: We should add 0 to our counter, then recursively call, removing the first element.
See the doctest on line 12 for why we only remove the first element instead of len(sequence)
elements.

Midterm (Question 2 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 11 of 21 Data C88C – Fall 2024

(Question 2 continued…)

(5 points) Fill in the following implementation of scariest_list. Given a list of potentially spooky
lists and a sequence, scariest_list returns the list with the most ghosts inside of it. You may assume
that all code from previous subparts have been implemented correctly. In the case of a tie, return the
the list that comes first in spooky_lists. You may not use any square brackets in your answer (i.e.
neither [or] should appear in your answer).

1 def scariest_list(spooky_lists, sequence):
2 """Returns the list with the most ghosts.
3 >>> scariest_list([[], [1, 2], [1, 1, 1, 2]], [1])
4 [1, 1, 1, 2]
5 >>> scariest_list([[1, 2], [2, 2, 2], [3, 4]], [2])
6 [2, 2, 2]
7 >>> scariest_list([[1, 2], [1, [2, [1, [2]]]]], [1, 2])
8 [1, [2, [1, [2]]]]
9 >>> scariest_list([[1, 2, 1], [1, 3, 1], [1, 1]], [1])
10 [1, 2, 1]
11 """
12 return max(spooky_lists, key=lambda lst: how_spooky(lst, sequence))

Q2.11

Solution: We want to return the list with the most ghosts, so we should call max. The function
how_spooky gives us information on how many ghosts are in each list. Simply setting key =
how_spooky means that we can’t pass in the sequence we care about. Therefore, we use a lambda
and set key = lambda lst: how_spooky(lst, sequence).

Spotting the ghosts :O

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 12 of 21 Data C88C – Fall 2024

Q3 Trick or Treat! (15 points)
The C88C staffers decide to go trick-or-treating! Suppose we have the following code that helps us
determine what each staffer gets:

1 def trick_or_treat(staffer):
2 reward = "Nothing"
3 if len(staffer) % 2 == 0:
4 reward = "Trick"
5 if len(staffer) // 2 >= 3:
6 reward = "Chocolate!"
7 elif staffer[0] == "S":
8 reward = "Cookies!"
9 return reward

Select what each of the following expressions evaluates to:

Q3.1 (1.5 points) trick_or_treat("Swetha")

“Nothing”

“Trick”

“Chocolate!”

“Cookies!”

None

Solution: len("Swetha") evaluates to 6, so the conditional expression in line 3 returns True.
Then, we execute the conditional expression in line 5, which sets reward to ”Chocolate!”. As a
result, we do not execute the conditional expression in line 7.

Q3.2 (1.5 points) trick_or_treat("Jedi")

“Nothing”

“Trick”

“Chocolate!”

“Cookies!”

None

Solution: len("Jedi") evaluates to 4, so the conditional expression in line 3 returns True.
Neither conditional expression in line 5 or 7 is True.

Midterm (Question 3 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 13 of 21 Data C88C – Fall 2024

(Question 3 continued…)

Q3.3 (2 points) trick_or_treat(["Shm", "and", "Grace"])

“Nothing”

“Trick”

“Chocolate!”

“Cookies!”

None

Solution: The length of a list is the number of elements inside of it. Therefore, line 3 and 5’s
conditional statement is False. Staffer[0] is equal to ”Shm”, which is not ”S”. Therefore, the
reward is ”Nothing”.

Midterm (Question 3 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 21 Data C88C – Fall 2024

(Question 3 continued…)

Q3.4 (10 points) Implement candy_bag, which takes in a Linked List called staffers and modifies
staffers such that every staff member’s rest attribute is another Link instance containing
the name of that staffer’s reward (determined by passing their name into trick_or_treat. If
staffers is an empty Linked List, we should not modify anything.
For instance, if staffer "s1" gets “Trick” and "s2" gets “Cookies!”, the linked list:

turns into this linked list after calling candy_bag on it:

1 def candy_bag(staffers):
2 """Modifies staffers.
3 Each staffer becomes linked to their respective trick/treat.
4 >>> staffers = Link("s1", Link("s2"))
5 >>> candy_bag(staffers)
6 >>> staffers.first
7 's1'
8 >>> staffers.rest.first #Assume "s1"'s reward is "Trick"
9 'Trick'

10 >>> staffers.rest.rest.first
11 's2'
12 >>> staffers.rest.rest.rest.first #Assume "s2"'s reward is "Cookies!"
13 'Cookies!'
14 """
15 current = staffers

Q3.5
16 while current is not Link.empty

Q3.6
:

17 reward = trick_or_treat(current.first
Q3.7

)

18 reward_link = Link(reward
Q3.8

, current.rest
Q3.9

)

19 current.rest
Q3.10

= reward_link

20 current = reward_link.rest
Q3.11

Solution: current.rest.rest is also an equivalent solution for the last line.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 21 Data C88C – Fall 2024

Q4 Pumpkin Patch Pyramid (23 points)
Angela and Khadija are wandering around the pumpkin patch, and want to make pyramids of pumpkins
as a fun C88C staff activity. In order for the pumpkin patch pyramid to be symmetrical (with a pumpkin
aligned exactly in the middle), each layer must only have an odd number of pumpkins in it. They
wonder what all the combinations of pumpkins there could be given n pumpkins!

Implement sums, which takes a positive integer n and returns a list of all unique combinations of odd
numbers that sum to n.

1 def sums(n):
2 """List all the lists of unique odd numbers that sum to n.
3 >>> sorted(sums(3))
4 [[3]]
5 >>> sorted(sums(16))
6 [[1, 3, 5, 7], [1, 15], [3, 13], [5, 11], [7, 9]]
7 >>> sorted(sums(17))
8 [[1, 3, 13], [1, 5, 11], [1, 7, 9], [3, 5, 9], [17]]
9 """
10 def at_least(n, k):
11 if n < k:
12 return BLANK ONE
13 elif n == k:
14 return BLANK TWO
15 with_k = [BLANK THREE for s in BLANK FOUR]
16 without_k = BLANK FIVE
17 return BLANK SIX
18 return at_least(n, BLANK SEVEN)

This is not a pumpkin patch pyramid, but it is cute...

Midterm (Question 4 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 21 Data C88C – Fall 2024

(Question 4 continued…)

Q4.1 (2 points) What should go in BLANK ONE?

0

[]

[[]]

[0]

Q4.2 (3 points) What should go in BLANK TWO?

[n]

[k]

[[n]]

[[k]]

Q4.3 (4 points) What should go in BLANK THREE?

[k] + s

[s] + k

s

[s, k]

Q4.4 (4 points) What should go in BLANK FOUR?

sums(n - 2)

sums(n - 1)

at_least(n, k - 2)

at_least(n, k - 1)

at_least(n, k)

at_least(n, k + 1)

at_least(n, k + 2)

at_least(n-k, k-2)

at_least(n-k, k-1)

at_least(n-k, k)

at_least(n-k, k+1)

at_least(n-k, k+2)

Q4.5 (4 points) What should go in BLANK FIVE?

sums(n - 2)

sums(n - 1)

at_least(n, k - 2)

at_least(n, k - 1)

at_least(n, k)

at_least(n, k + 1)

at_least(n, k + 2)

at_least(n-k, k-2)

at_least(n-k, k-1)

at_least(n-k, k)

at_least(n-k, k+1)

at_least(n-k, k+2)

Q4.6 (3 points) What should go in BLANK SIX?

with_k + without_k

with_k.extend(without_k)

with_k - without_k

[lst for lst in with_k if lst not in without_k]

[lst for lst in with_k if lst in without_k]

max([with_k, without_k], key = len)

Q4.7 (3 points) What should go in BLANK SEVEN?

k

n

0

1

Midterm (Question 4 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 17 of 21 Data C88C – Fall 2024

(Question 4 continued…)

Solution: The general idea here is that you start k at 1, then either use that value or not. Each
recursive call, you add 2 to k to move to the next odd number.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 18 of 21 Data C88C – Fall 2024

Q5 Spooky Scary Skeletons (15 points)
Jack-O-Lantern wants to track his roster of Skeletons!

Fill in the Skeleton and Spooky Scary Skeleton classes with the following specifications:

The Skeleton class contains a class attribute roster, which is a dictionary with names (Strings) as
keys and Skeleton or Spooky Scary Skeleton instances as values. Every time a new Skeleton or
Spooky Scary Skeleton is created, we modify this class attribute.

Each Skeleton and Spooky Scary Skeleton has the following instance attributes:

– name: a String representing the name of the Skeleton
– dance_move: a String representing the Skeleton’s best dance move!

Additionally, implement the dancemethod, which takes in a String representing the name of a potential
dance partner.

– If this name is not in the roster, return the String “Skeleton Stranger Danger!”
– Else, if both Skeleton's dance_moves are equal to one another, return the String “Dancing the

night away!”
– Else, return the String “Not quite in sync!”

One caveat: if both Skeletons are Spooky Scary Skeletons, then we should return “Fated to be!”,
regardless of their favorite dance_move.

Below is an example use case of the classes:

1 >>> skellington = Skeleton("Skellington", "Bone Boogie")
2 >>> grimm = SpookyScarySkeleton("Grimm", "Bone Boogie")
3 >>> jack = SpookyScarySkeleton("Jack", "Rib Cage Rumba")
4 >>> skellington.name
5 'Skellington'
6 >>> Skeleton.roster["Grimm"].dance_move
7 'Bone Boogie'
8 >>> skellington.dance("Jack")
9 'Not quite in sync!'
10 >>> skellington.dance("Grimm")
11 'Dancing the night away!'
12 >>> jack.dance("Grimm")
13 'Fated to be!'
14 >>> jack.dance("Priya")
15 'Skeleton Stranger Danger!'

Midterm (Question 5 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 19 of 21 Data C88C – Fall 2024

(Question 5 continued…)

1 class Skeleton:
2 roster = {}
3 def __init__(self, name, dance_move):
4 self.name

Q5.1
= name

Q5.2
5 self.dance_move

Q5.3
= dance_move

Q5.4
6 self.roster[name] = self

Q5.5
7 def dance(self, partner):
8 if partner not in self.roster

Q5.6
:

9 return "Skeleton Stranger Danger!"
10 elif self.roster[partner].dance_move == self.dance_move

Q5.7
:

11 return "Dancing the night away!"
12 else:
13 return "Not quite in sync!"
14
15 class SpookyScarySkeleton(Skeleton):
16 def dance(self, partner):
17 if CODE OMITTED: #Is the partner a Spooky Scary Skeleton?
18 return "Fated to be!"
19 return super().dance(partner)

Q5.8

(5 points) Jack finds himself dancing with other Skeletons quite often. Fill in the method implementa-
tion for get_dance_method such that the following code executes as described below. For full credit,
you may not use lambdas in your solution. A correct implementation with lambdas will incur a point
penalty.

1 ... #Assume we have the code from the previous page
2 >>> jack_dance = get_dance_method(jack)
3 >>> jack_dance("Grimm")
4 'Fated to be!'
5 >>> jack_dance("Priya")
6 'Skeleton Stranger Danger!'

1 class Skeleton:
2 ...
3 def get_dance_method(skeleton):
4 return skeleton.dance

Q5.9

Solution: As written, the code will not execute properly. The get_dance_method should be placed
outside of the Skeleton class. In that case, skeleton.dance would work properly. This question
was graded to accept either skeleton.dance or self.dance to account for this issue.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 20 of 21 Data C88C – Fall 2024

Q6 The Finish Line (0 points)
These questions will not be assigned credit; feel free to leave them blank.

Q6.1 (0 points)
Trick Treat

Q6.2 (0 points) What’s your favorite halloween candy?
Q6.3 (0 points) If there’s anything else you want us to know, or you feel like there was an ambiguity in

the exam, please put it in the box below.
For ambiguities, you must qualify your answer and provide an answer for both interpretations.
For example, “if the question is asking about A, then my answer is X, but if the question is asking
about B, then my answer is Y”. You will only receive credit if it is a genuine ambiguity and both of
your answers are correct. We will only look at ambiguities if you request a regrade.

Solution:

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 21 of 21 Data C88C – Fall 2024

