
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

 Spring 2018 Instructor: Prof. Gerald Friedland Real Final: 2018-05-09

Computational Structures for Data Science, CS88 Mock Final Exam

Last Name (Please print clearly)

First Name (Please print clearly)

Student ID Number Do not turn this in.

What time is your lab?

Name of the person to your: Left | Right

All my work is my own. I had no prior knowledge of the
exam contents nor will I share the contents with others in

CS88 who haven’t taken it yet.
(please sign)

We advise you take the mock final by
yourself a couple days before the final and
then discuss results with your peers.

Instructions
● Don’t Panic! This booklet contains 11 pages including this cover page. Put all
answers on pages 2-11; you can use page 12 for extra/doodle space.
● Please turn off all pagers, cell phones and beepers. Remove all hats and
headphones.
● You have 90 minutes to complete this mock exam (the actual final will be two hours).
The final is closed book, no computers, no PDAs, no cell phones, no calculators, but
you are allowed two double-sided sheets of notes, the midterm study guide and the final
study guide. There may be partial credit for incomplete answers; write as much of the
solution as you can. When we provide a blank, please fit your answer within the space
provided.
● Remember: Whatever your score in this exam – it counts 20% of the total grade. If
you are caught cheating, however, it’s an F and we will have to report it.
● You are allowed to use standard Python data structures for programming questions.

Good luck!

Question 1 2 3 4 5 6 Total

Points 5 6 5 6 6 12 40

Warm-up Questions with short answers (1pt each)

Please write your answer within the designated boxes.

Question 1a: What is Polymorphism in object-oriented programming?

Question 1b: Give one example which will match the following pattern: r’^[^aeiou]\d.+’

Question 1c: Fill in the gaps with some of the following words so that the sentences are
correct: class, instance, object, class variables, specialized, inherits, overloads, instance
variables, methods.

A class consists of attributes and ________________that define its behavior.
____________________ are attributes shared among all objects of a class, while
_______________________ are attributes specific to an object. A child class
________________ attributes from a superclass or parent class.

Question 1d: How does Python handle errors?

Question 1e: Give two benefits of object-oriented programming.

Question 2: SQL (6 pts)
Use the two tables below, hotels and guests, for the questions in this section.

hotels

hotel_id name location avg_ratings

1 Tipton Hotel San Francisco 4.7

2 Feraton Hotel Maui 4.6

3 Hotel Tarriot Los Angeles 4.6

4 TripleTree Hotel San Diego 4.3

guests

name hotel_id rating_given

Andrea 3 4.8

Justin 4 4.0

Eric 1 4.7

Sherry 1 5.0

Lauren 2 4.9

Spencer 3 4.4

Joyce 4 4.3

cities

name top_attraction

San Francisco Golden Gate Bridge

Maui Haleakala Volcano

Los Angeles Disney Land

San Diego San Diego Zoo

1. (2 points) Fill in the blanks for the SQL query below. The query returns a table
with 2 columns: hotel_name and the number of guests who stayed there. The column
names don’t matter.

SELECT _________________________
FROM ___________________________
WHERE __________________________
GROUP BY _______________________;

2. (2 points) What does the following query return? Write down all output values
AND column names. You may not need all the lines.

SELECT name
FROM guests
WHERE rating_given > 4.5;
__
__
__
__

3. (2 points) Write a query to return one column with the names of the guests who are
staying in the hotel which is located in the city with the volcano as the top attraction .

SELECT __
FROM __
WHERE ___;

Question 3: Sequences and Generators (5 pts)

1. Write a generator that takes in any number of iterables and zips them together. It
should output a series of lists, each containing the nth items of each iterable. It
should stop when the smallest iterable runs out of elements.

def zip_generator(*iterables):

"""

>>> z = zip_generator([1, 2, 3], [4, 5, 6], [7])

>>> for i in z:

... print(i)

...

[1, 4, 7]

>>> z = zip_generator([1, 2, 3], [4, 5, 6], [7, 8, 9, 10])

>>> for i in z:

... print(i)

...

[1, 4, 7]

[2, 5, 8]

[3, 6, 9]

"""

iterators = [___________________________] # create a list of

iterators

while True:

yield the next element from each iterator in “iterators”

yield [___________________________]

Question 4: Buggy Code (6 pts)
Each of the functions below has an error that causes the function to have different
behavior than what is specified in the docstring. The output of the error is given to you.
Use the code and error output to explain the bug in 2 sentences or less. Violation of an
assert statement does not count as a valid bug. For example, calling countdown with a
negative number should error due to the assert statement. This is not a bug.

1. def convert_lists_to_dictionary(list1, list2):
‘‘‘
>>> convert_lists_to_dictionary ([a, b, c], [1, 2, 3])
{‘a’: 1, ‘b’: 2, ‘c’:3}
’’’
 assert type(list1) == list
 assert type(list2) == list
 assert len(list1) == len(list2)

 dict = {}
 dict[list1] = list2

Error message:
TypeError: unhashable type: 'list'

Explanation:

2. def list_sum(list):
 ‘‘‘
 >>> list_sum([1,2,3])
 6
’’’

 if len(list) == 1:

 return list[0]
 else:
 return list[0]+list_sum(list[0:])

Error message:
RuntimeError: maximum recursion depth exceeded while calling a Python object

Explanation:

Question 5: Trees (6 pts)

Use the following implementation of the binary tree class for the questions below. The
entry in each node of the tree must be an integer.

class Tree:
 def __init__(self, entry, branches=()):
assert type(self.entry) == int
 self.entry = entry
for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

def is_leaf(self):
 return not self.branches

Write a method for the Tree class that will return the minimum value of all leaf nodes in
a Tree object.

def tree_leaf_min(self):
‘‘‘
>>> t = Tree(2,[Tree(3),Tree(5,[Tree(10)])])
>>> t.tree_leaf_min()
2
’’’
min_leaf = ______________________________

return min_leaf

Question 6: WWPP (12 pts, 2 each)

Consider the following class definition.

class pet(object):
 def __init__(self,weight):
 self.weight = weight
 def getweight(self):
 return self.weight
 def about(self):
 return "This is a pet"

class insurable(object):
 def __init__(self,amount,age):
 self.amount = amount
 self.age = age
 def getinsurancecost(self):
 return self.amount * self.age
 def about(self):
 return "This is an insurable"

class dog inherits from pet object and insurable object
class dog(pet, insurable):
 def __init__(self,sound,weight,amount, age):
 self.sound = sound
 pet.__init__(self,weight)
 insurable.__init__(self,amount,age)

 def getnoise(self):
 return self.sound

 def about_dog(self):
 rv = self.about() + " " + self.getnoise() + " " + \
 str(self.getweight()) + " " + \
 str(self.getinsurancecost())
 return rv

hound = dog("woof",31,1000,3)

parrot = pet(8)

For each of the following, fill in what Python would print. Some might take more than a
line, some might not need every line. If there is an error, specify what kind of error. If
Python wouldn’t print anything, leave the lines blank.

>>> print(hound.getnoise())
>>> print(hound.getweight())

>>> print(hound.about_dog())

>>print (hound.about())

>>> print(parrot.getnoise())

>>>print (parrot.getinsurancecost())

>>>print (hound.getinsurancecost())

 Question 7: Dictionaries

There’s a new word-guessing game going around that everyone is playing called Max
Vowels. As the name implies, you receive more points if you guess a word with a
larger amount of vowels. Within a given time limit, you guess as many words as you
can and you calculate the amount of points you have by going through each word
you guessed and adding up all the vowels in each of these words.

But you realize it’s really slow to count the number of vowels for each word every
time you start the game over. To make counting the number of points for each player
faster, you instead choose to categorize each word by the number of vowels there
are in that word. So for example, the number 3 would correspond to ‘elephant’,
‘capsize’, and ‘patio’. This way, you can just check how many words there are for
each category and multiply that by the category to find the total number of points you
have.

Write the following function that will return a dictionary that will store each word
according to the number of vowels there are in the word.

def store_words(words):

 """

 >>> guesses = store_words([‘i’, ‘love’, ‘CS88’])

 >>> guesses

 {0: [‘CS88’], 1: [‘i’], 2: [‘love’]}

 >>> guesses[1]

 [‘i’]

 >>> 3 in guesses

 False

 """

 __

 __

 __

 __

 __

Now, count the total number of points there are in the player’s dictionary of guessed
words.

def count_points(words):

 """

 >>> guesses = store_words([‘i’, ‘love’, ‘CS88’])

 >>> count_points(guesses)

 >>> 3

 """

 __

 __

 __

 __

 __

Doodle/Notes/Extra Space:

